中国电力 ›› 2024, Vol. 57 ›› Issue (5): 222-231.DOI: 10.11930/j.issn.1004-9649.202305120

• 新能源 • 上一篇    下一篇

基于STL-Bayesian时空模型的分布式光伏系统异常检测

刘韵艺1(), 汤渊1(), 苏盛2(), 吴裕宙1(), 王晓倩2()   

  1. 1. 广东电网有限责任公司东莞供电局,广东 东莞 523008
    2. 长沙理工大学 电气与信息工程学院,湖南 长沙 410004
  • 收稿日期:2023-05-27 出版日期:2024-05-28 发布日期:2024-05-16
  • 作者简介:刘韵艺(1990—),女,硕士,工程师,从事电力营销管理研究,E-mail: 516101194@qq.com
    汤渊(1990—),男,硕士,高级工程师,从事电力营销管理研究,E-mail:454237103@qq.com
    苏盛(1975—),男,通信作者,博士生导师,教授,从事配用电大数据分析与电力气象灾害分析研究,E-mail:eessheng@163.com
    吴裕宙(1983—),男,硕士,高级工程师,从事电力营销数据分析与高级应用研究,E-mail:aeou11983@163.com
    王晓倩(1998—),女,硕士研究生,从事分布式光伏系统异常状态检测技术研究,E-mail:wxqian21@126.com
  • 基金资助:
    国家自然科学基金资助项目(电力调度系统定向攻击的虚构陷阱抗毁性主动安全防护方法研究,51777015);中国南方电网有限公司科技项目(031900KK52220039)。

Anomaly Detection for Distributed Photovoltaic Systems Based on STL-Bayesian Spatio-Temporal Model

Yunyi LIU1(), Yuan TANG1(), Sheng SU2(), Yuzhou WU1(), Xiaoqian WANG2()   

  1. 1. Guangdong Power Grid Company Limited Dongguan Power Supply Bureau, Dongguan 523008, China
    2. School of Electrical & Information Engineering, Changsha University of Science and Technology, Changsha 410004, China
  • Received:2023-05-27 Online:2024-05-28 Published:2024-05-16
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Destructive Active Security Protection Method of Fictitious Traps Against Targeted Attacks in Power Dispatch System, No.51777015), Science and Technology Project of CSG (No.031900KK52220039).

摘要:

分布式光伏发电系统一般不配备多种类的传感器和监测设备,反映设备运行状态且可用于异常检测的数据有限。提出了基于STL-Bayesian时空模型的光伏异常状态检测方法,利用气象在时空上的传递性,挖掘光伏发电出力的关联性进而完成异常检测。首先,用季节性分解(seasonal and trend decomposition using loess,STL)将光伏发电有功功率时序数据分解为3个分量;然后,研究不同长度数据输入对分解结果的影响和区域内分量的时空分布特性;接着,通过构建贝叶斯模型分别对趋势分量和剩余分量做短期和超短期空间插值,得到区域内光伏出力;最后,计算真实值与回归值的推土机距离(earth move's distance,EMD)用于检测异常状态。算例分析表明,所提模型在分布式光伏场景检测可逆异常和不可逆异常状态均有较高准确率。

关键词: 分布式光伏, 时序分解, 空间插值, 异常状态检测, 时空分布特性

Abstract:

Distributed photovoltaic (PV) power generation systems generally do not come equipped with a variety of sensors and monitoring devices, limiting the data available for reflecting equipment operation and conducting anomaly detection. This article proposes a PV anomaly detection method based on the STL-Bayesian spatio-temporal model, which utilizes the spatio-temporal transferability of meteorological data to uncover the correlation of PV power output and perform anomaly detection. Firstly, the seasonal and trend decomposition using Loess (STL) is employed to decompose the PV active power time series data into three components. Then, the influence of different lengths of input data on the decomposition results and the spatio-temporal distribution characteristics of the components within the region are investigated. Subsequently, Bayesian models are constructed to perform short-term and ultra-short-term spatial interpolation on the trend component and the residual component, respectively, so as to obtain the PV output within the region. Finally, the earth move's distance (EMD) between the actual values and regression values is calculated to detect abnormal states. The analysis of the algorithm shows that the model has a high accuracy in the detection of both reversible and irreversible anomalies under distributed PV scenarios.

Key words: distributed photovoltaics, time series data decomposition, spatial interpolation, abnormal states detection, spatio-temporal distribution characteristics