中国电力 ›› 2024, Vol. 57 ›› Issue (5): 211-221.DOI: 10.11930/j.issn.1004-9649.202304066
朱子民1(), 张锦芳2(
), 常清3, 周专4, 张晓林2
收稿日期:
2023-04-19
出版日期:
2024-05-28
发布日期:
2024-05-16
作者简介:
朱子民(1991—),男,硕士,工程师,从事电力系统分析研究,E-mail:878876042@qq.com基金资助:
Zimin ZHU1(), Jinfang ZHANG2(
), Qing CHANG3, Zhuan ZHOU4, Xiaolin ZHANG2
Received:
2023-04-19
Online:
2024-05-28
Published:
2024-05-16
Supported by:
摘要:
新能源汇集经柔性直流输电(voltage source converter based high voltage direct current,VSC-HVDC)技术送出是促进新能源消纳的有效方式。但新能源渗透率的持续增加导致电网强度不断下降,采用传统跟网型(grid-following,GFL)换流技术已无法满足系统稳定运行需求。为提高系统弱电网适应性,满足大规模新能源接入弱同步支撑柔直系统应用场景需求,提出在柔直系统送端换流站采用VSG控制策略。首先,建立整流侧控制小信号数学模型,利用根轨迹法深入研究虚拟阻抗对系统稳定性的影响。其次,提出利用交流电压变化率及电压差值等电气量构建虚拟电抗自适应调整项的改进VSG控制算法,在保证系统等效阻抗呈感性的同时,可提高送端交流系统的等效短路比,达到改善系统整体性能的效果。最后,通过PSCAD/EMTDC电磁暂态仿真验证所提控制策略的有效性。
朱子民, 张锦芳, 常清, 周专, 张晓林. 大规模新能源接入弱同步支撑柔直系统的送端自适应VSG控制策略[J]. 中国电力, 2024, 57(5): 211-221.
Zimin ZHU, Jinfang ZHANG, Qing CHANG, Zhuan ZHOU, Xiaolin ZHANG. Adaptive VSG Control Strategy of Sending End for Large-Scale Renewable Energy Connected to Weakly-Synchronized Support VSC-HVDC System[J]. Electric Power, 2024, 57(5): 211-221.
主要参数 | 数值 | |
交流侧额定电压/kV | 500 | |
直流侧额定电压/kV | ±800 | |
额定容量/MW | 8 000 | |
短路比 | <1.4 |
表 1 系统主要参数
Table 1 Main parameters of system
主要参数 | 数值 | |
交流侧额定电压/kV | 500 | |
直流侧额定电压/kV | ±800 | |
额定容量/MW | 8 000 | |
短路比 | <1.4 |
1 | 单葆国, 冀星沛, 姚力, 等. 能源高质量发展下中国电力供需格局演变趋势[J]. 中国电力, 2021, 54 (11): 1- 9, 18. |
SHAN Baoguo, JI Xingpei, YAO Li, et al. Evolving tendency of electric supply and demand pattern under the circumstances of high-quality energy development[J]. Electric Power, 2021, 54 (11): 1- 9, 18. | |
2 | 辛保安, 郭铭群, 王绍武, 等. 适应大规模新能源友好送出的直流输电技术与工程实践[J]. 电力系统自动化, 2021, 45 (22): 1- 8. |
XIN Baoan, GUO Mingqun, WANG Shaowu, et al. Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J]. Automation of Electric Power Systems, 2021, 45 (22): 1- 8. | |
3 | 刘卫东, 李奇南, 王轩, 等. 大规模海上风电柔性直流输电技术应用现状和展望[J]. 中国电力, 2020, 53 (7): 55- 71. |
LIU Weidong, LI Qinan, WANG Xuan, et al. Application status and prospect of VSC-HVDC technology for large-scale offshore wind farms[J]. Electric Power, 2020, 53 (7): 55- 71. | |
4 | IRENA. Future of wind: deployment, investment, technology, grid integration and socioeconomic aspects[R]. Abu Dhabi: IRENA, 2019. |
5 | HATZIARGYRIOU N, MILANOVIĆ J, RAHMANN C, et al. Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies [R]. Piscataway: IEEE, 2020. |
6 | 马进, 赵大伟, 钱敏慧, 等. 大规模新能源接入弱同步支撑直流送端电网的运行控制技术综述[J]. 电网技术, 2017, 41 (10): 3112- 3120. |
MA Jin, ZHAO Dawei, QIAN Minhui, et al. Reviews of control technologies of large-scale renewable energy connected to weakly-synchronized sending-end DC power grid[J]. Power System Technology, 2017, 41 (10): 3112- 3120. | |
7 | 徐政. 海上风电送出主要方案及其关键技术问题[J]. 电力系统自动化, 2022, 46 (21): 1- 10. |
XU Zheng. Main schemes and key technical problems for grid integration of offshore wind farm[J]. Automation of Electric Power Systems, 2022, 46 (21): 1- 10. | |
8 | 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46 (9): 3586- 3595. |
XU Jieyi, LIU Wei, LIU Shu, et al. Current state and development trends of power system converter grid-forming control technology[J]. Power System Technology, 2022, 46 (9): 3586- 3595. | |
9 |
ROSSO R, WANG X F, LISERRE M, et al. Grid-forming converters: control approaches, grid-synchronization, and future trends—a review[J]. IEEE Open Journal of Industry Applications, 2021, 2, 93- 109.
DOI |
10 | 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39 (21): 165- 175. |
ZHENG Tianwen, CHEN Laijun, CHEN Tianyi, et al. Review and prospect of virtual synchronous generator technologies[J]. Automation of Electric Power Systems, 2015, 39 (21): 165- 175. | |
11 | 钟庆昌. 虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37 (2): 336- 349. |
ZHONG Qingchang. Virtual synchronous machines and autonomous power systems[J]. Proceedings of the CSEE, 2017, 37 (2): 336- 349. | |
12 | 曹炜, 钦焕乘, 陆建忠, 等. 新型电力系统下虚拟同步机的定位和应用前景展望[J]. 电力系统自动化, 2023, 47 (4): 190- 207. |
CAO Wei, QIN Huancheng, LU Jianzhong, et al. Orientation and application prospect of virtual synchronous generator in new power system[J]. Automation of Electric Power Systems, 2023, 47 (4): 190- 207. | |
13 | 马磊, 刘国荣, 毛云坤, 等. 基于VSG的永磁直驱风电机组惯量支撑控制策略[J]. 电网与清洁能源, 2020, 36 (12): 115- 120. |
MA Lei, LIU Guorong, MAO Yunkun, et al. Inertia support control strategy for permanent magnet direct-drive wind turbines based on VSG[J]. Power System and Clean Energy, 2020, 36 (12): 115- 120. | |
14 | 盛师贤, 周鑫, 王德林, 等. 虚拟同步风电场协同光伏电站附加阻尼控制方法[J]. 中国电力, 2022, 55 (3): 177- 186. |
SHENG Shixian, ZHOU Xin, WANG Delin, et al. Additional damping cooperative control method of virtual synchronous wind farm and photovoltaic power stations[J]. Electric Power, 2022, 55 (3): 177- 186. | |
15 | 柴建云, 赵杨阳, 孙旭东, 等. 虚拟同步发电机技术在风力发电系统中的应用与展望[J]. 电力系统自动化, 2018, 42 (9): 17- 25, 68. |
CHAI Jianyun, ZHAO Yangyang, SUN Xudong, et al. Application and prospect of virtual synchronous generator in wind power generation system[J]. Automation of Electric Power Systems, 2018, 42 (9): 17- 25, 68. | |
16 |
LIU J, MIURA Y, BEVRANI H, et al. Enhanced virtual synchronous generator control for parallel inverters in microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8 (5): 2268- 2277.
DOI |
17 |
VASQUEZ J C, GUERRERO J M, SAVAGHEBI M, et al. Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters[J]. IEEE Transactions on Industrial Electronics, 2013, 60 (4): 1271- 1280.
DOI |
18 | 郭小龙, 张江飞, 亢朋朋, 等. 含基于PI控制受端二次调频的特高压直流虚拟同步控制策略[J]. 中国电力, 2022, 55 (11): 66- 72. |
GUO Xiaolong, ZHANG Jiangfei, KANG Pengpeng, et al. Virtual synchronization control strategy for UHVDC with secondary frequency modulation based on PI control[J]. Electric Power, 2022, 55 (11): 66- 72. | |
19 | 邹丹, 艾欣, 王奥, 等. 三端背靠背柔性直流输电的虚拟同步发电机控制策略及其在配电网中的应用[J]. 发电技术, 2018, 39 (3): 233- 239. |
ZOU Dan, AI Xin, WANG Ao, et al. Virtual synchronous generator control strategy of three terminal back-to-back voltage source converter based HVDC and its application in distribution network[J]. Power Generation Technology, 2018, 39 (3): 233- 239. | |
20 | 杨双飞. 基于模块化多电平换流器的虚拟同步电机控制技术研究[D]. 北京: 华北电力大学, 2018. |
YANG Shuangfei. Research on virtual synchronous generator control technology based on modular multilevel converter[D]. Beijing: North China Electric Power University, 2018. | |
21 | 刘科. 弱电网下MMC换流站的虚拟同步发电机控制策略研究[D]. 吉林: 东北电力大学, 2021. |
LIU Ke. Research on virtual synchronous generator control strategy of MMC in weak grid[D]. Jilin: Northeast Dianli University, 2021. | |
22 | 宋琼, 张辉, 孙凯, 等. 多微源独立微网中虚拟同步发电机的改进型转动惯量自适应控制[J]. 中国电机工程学报, 2017, 37 (2): 412- 424. |
SONG Qiong, ZHANG Hui, SUN Kai, et al. Improved adaptive control of inertia for virtual synchronous generators in islanding micro-grid with multiple distributed generation units[J]. Proceedings of the CSEE, 2017, 37 (2): 412- 424. | |
23 | SHI K, CHEN C, SUN Y X, et al. Rotor inertia adaptive control and inertia matching strategy based on parallel virtual synchronous generators system[J]. IET Generation, Transmission & Distribution, 2020, 14(10): 1854–1861. |
24 | 邢鹏翔, 付立军, 王刚, 等. 改善微电网频率动态响应的虚拟同步发电机强化惯量控制方法[J]. 高电压技术, 2018, 44 (7): 2346- 2353. |
XING Pengxiang, FU Lijun, WANG Gang, et al. Control strategy of virtual synchronous generator with enhanced inertia for improving dynamic frequency response of microgrid[J]. High Voltage Engineering, 2018, 44 (7): 2346- 2353. | |
25 | 郭建祎, 樊友平. 基于改进粒子群算法的VSG参数自适应控制策略[J]. 电机与控制学报, 2022, 26 (6): 72- 82. |
GUO Jianyi, FAN Youping. Adaptive VSG parameter control strategy based on improved particle swarm optimization[J]. Electric Machines and Control, 2022, 26 (6): 72- 82. | |
26 | 卢盛阳, 朱钰, 陈涛, 等. 基于改进粒子群算法的阻尼惯量自适应控制策略[J/OL]. 电力系统及其自动化: 1–9 [2023-07-12]. https://doi.org/10.19635/j.cnki.csu-epsa.001287 |
LU Shengyang, ZHU Yu, CHEN Tao, et al. Adaptive control strategy of damping inertia based on improved particle swarm optimization[J/OL]. Proceedings of the CSU-EPSA: 1–9[2023-07-12]. https://doi.org/10.19635/j.cnki.csu-epsa.001287. | |
27 | 杜燕, 朱轲, 杨向真, 等. 考虑频率耦合的VSG虚拟阻抗优化设计[J]. 高电压技术, 2022, 48 (12): 5057- 5067. |
DU Yan, ZHU Ke, YANG Xiangzhen, et al. Optimal design of virtual synchronous generator virtual impedance considering frequency coupling[J]. High Voltage Engineering, 2022, 48 (12): 5057- 5067. | |
28 | 温春雪, 黄耀智, 胡长斌, 等. 虚拟同步发电机接口变换器并联运行虚拟阻抗自适应控制[J]. 电工技术学报, 2020, 35 (S2): 494- 502. |
WEN Chunxue, HUAGN Yaozhi, HU Changbin, et al. Adaptive control of virtual impedance in parallel operation of virtual synchronous generator interface converter[J]. Transactions of China Electrotechnical Society, 2020, 35 (S2): 494- 502. |
[1] | 李振垚, 甘德强, 栾某德, 何国庆. 基于全状态模型的自同步电压源并网系统频率稳定分析[J]. 中国电力, 2023, 56(5): 182-192. |
[2] | 蔡维正, 郭昆丽, 刘璐雨, 吴朝俊. 基于一阶LADRC控制的直驱风机次同步振荡抑制策略[J]. 中国电力, 2022, 55(4): 175-184. |
[3] | 张运洲, 陈宁, 黄碧斌, 王彩霞, 李江涛. 基于系统成本的新能源等效上网电价计算方法及应用[J]. 中国电力, 2022, 55(2): 1-8. |
[4] | 郭小龙, 张江飞, 亢朋朋, 杨桂兴, 孙谊媊, 袁铁江, 刘勇. 含基于PI控制受端二次调频的特高压直流虚拟同步控制策略[J]. 中国电力, 2022, 55(11): 66-72. |
[5] | 张帆, 高本锋, 李铁成. 基于SVG的光伏并网SSO附加阻尼抑制策略[J]. 中国电力, 2021, 54(12): 11-19,44. |
[6] | 张义, 胡正阳, 彭佩佩, 陈宁, 唐冰婕, 高丙团. 基于极点配置的新能源并网附加阻尼控制策略[J]. 中国电力, 2021, 54(10): 217-222. |
[7] | 牛耕, 寇凌峰, 侯小刚, 屈小云, 谢辉, 高博. 基于Non-MPPT算法的区域光伏消纳控制策略[J]. 中国电力, 2019, 52(11): 107-117. |
[8] | 姚良忠, 刘艳章, 杨波, 陈宁. 大规模新能源发电集群直流汇集及输送方案研究[J]. 中国电力, 2018, 51(1): 36-43. |
[9] | 白恺, 宋鹏, 刁嘉, 李智, 张扬帆, 杨伟新, 董超. 基于可靠性和发电性能的新能源发电设备状态评估方法[J]. 中国电力, 2016, 49(7): 140-144. |
[10] | 姜鸿羽, 马宏忠, 梁欢, 姜宁, 李凯. 基于自适应RBF神经网络的变压器噪声有源控制算法[J]. 中国电力, 2014, 47(7): 45-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||