[1] YE Y D, QIAO Y, LU Z X. Revolution of frequency regulation in the converter-dominated power system[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 145–156. [2] 郭小龙, 刘方蕾, 胥国毅, 等. 风电机组参与调频的虚拟惯量控制与快速频率控制[J]. 智慧电力, 2020, 48(12): 1–7 GUO Xiaolong, LIU Fanglei, XU Guoyi, et al. Virtual inertia control and fast frequency control of wind turbine participating in frequency regulation[J]. Smart Power, 2020, 48(12): 1–7 [3] MAHISH P, PRADHAN A K. Distributed synchronized control in grid integrated wind farms to improve primary frequency regulation[J]. IEEE Transactions on Power Systems, 2020, 35(1): 362–373. [4] 余希瑞, 周林, 郭珂, 等. 含新能源发电接入的电力系统低频振荡阻尼控制研究综述[J]. 中国电机工程学报, 2017, 37(21): 6278–6290 YU Xirui, ZHOU Lin, GUO Ke, et al. A survey on low frequency oscillation damping control in power system integrated with new energy power generation[J]. Proceedings of the CSEE, 2017, 37(21): 6278–6290 [5] SHIM J W, VERBIČ G, ZHANG N, et al. Harmonious integration of faster-acting energy storage systems into frequency control reserves in power grid with high renewable generation[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6193–6205. [6] 倪以信. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [7] 陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究[J]. 中国电机工程学报, 2017, 37(1): 20–27 CHEN Guoping, LI Mingjie, XU Tao, et al. Study on technical bottleneck of new energy development[J]. Proceedings of the CSEE, 2017, 37(1): 20–27 [8] 熊连松, 刘小康, 卓放, 等. 光伏发电系统的小信号建模及其控制器参数的全局优化设计方法[J]. 电网技术, 2014, 38(5): 1234–1241 XIONG Liansong, LIU Xiaokang, ZHUO Fang, et al. Small-signal modeling of photovoltaic power generation system and global optimal design for its controller parameters[J]. Power System Technology, 2014, 38(5): 1234–1241 [9] LIU W Y, GE R D, LV Q C, et al. Research on a small signal stability region boundary model of the interconnected power system with large-scale wind power[J]. Energies, 2015, 8(4): 2312–2336. [10] 王清, 薛安成, 张晓佳, 等. 双馈风机下垂控制对系统小扰动功角稳定的影响机理分析[J]. 电网技术, 2017, 41(4): 1091–1099 WANG Qing, XUE Ancheng, ZHANG Xiaojia, et al. Mechanism analysis of droop control of DFIG influence on system small-signal dynamic stability based on damping torque analysis[J]. Power System Technology, 2017, 41(4): 1091–1099 [11] 马静, 李益楠, 邱扬, 等. 双馈风电机组虚拟惯量控制对系统小干扰稳定性的影响[J]. 电力系统自动化, 2016, 40(16): 1–7 MA Jing, LI Yinan, QIU Yang, et al. Impact of virtual inertia control of DFIG wind turbines on system small-signal stability[J]. Automation of Electric Power Systems, 2016, 40(16): 1–7 [12] EFTEKHARNEJAD S, VITTAL V, HEYDT G T, et al. Small signal stability assessment of power systems with increased penetration of photovoltaic generation: a case study[J]. IEEE Transactions on Sustainable Energy, 2013, 4(4): 960–967. [13] 周林, 任伟, 余希瑞. 大型光伏电站抑制低频振荡的有功阻尼控制策略[J]. 中国电机工程学报, 2016, 36(11): 2987–2995 ZHOU Lin, REN Wei, YU Xirui. Active damping control strategy in the large-scale photovoltaic plants restraining low-frequency oscillations[J]. Proceedings of the CSEE, 2016, 36(11): 2987–2995 [14] 李生虎, 孙琪, 石雪梅, 等. 基于区域极点配置的风电系统弱阻尼低频振荡模式抑制[J]. 电力系统保护与控制, 2017, 45(20): 14–20 LI Shenghu, SUN Qi, SHI Xuemei, et al. Suppression of weakly damped low-frequency modes of wind power system based on regional pole placement[J]. Power System Protection and Control, 2017, 45(20): 14–20 [15] QUINTERO J, VITTAL V, HEYDT G T, et al. The impact of increased penetration of converter control-based generators on power system modes of oscillation[J]. IEEE Transactions on Power Systems, 2014, 29(5): 2248–2256. [16] ZHONG Q C, WEISS G. Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259–1267. [17] SHINTAI T, MIURA Y, ISE T. Oscillation damping of a distributed generator using a virtual synchronous generator[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 668–676. [18] 程冲, 杨欢, 曾正, 等. 虚拟同步发电机的转子惯量自适应控制方法[J]. 电力系统自动化, 2015, 39(19): 82–89 CHENG Chong, YANG Huan, ZENG Zheng, et al. Rotor inertia adaptive control method of VSG[J]. Automation of Electric Power Systems, 2015, 39(19): 82–89 [19] XI J B, GENG H. Decoupling control scheme for VSG-WPPs to participate in grid frequency response[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6368–6375. [20] 葛俊, 刘辉, 江浩, 等. 虚拟同步发电机并网运行适应性分析及探讨[J]. 电力系统自动化, 2018, 42(9): 26–35 GE Jun, LIU Hui, JIANG Hao, et al. Analysis and investigation on grid-connected operation adaptability of virtual synchronous generators[J]. Automation of Electric Power Systems, 2018, 42(9): 26–35 [21] GAO B T, XIA C P, CHEN N, et al. Virtual synchronous generator based auxiliary damping control design for the power system with renewable generation[J]. Energies, 2017, 10(8): 1146. [22] 吴恒, 阮新波, 杨东升, 等. 虚拟同步发电机功率环的建模与参数设计[J]. 中国电机工程学报, 2015, 35(24): 6508–6518 WU Heng, RUAN Xinbo, YANG Dongsheng, et al. Modeling of the power loop and parameter design of virtual synchronous generators[J]. Proceedings of the CSEE, 2015, 35(24): 6508–6518 [23] HU Z Y, GAO B T, CHEN N, et al. Modified virtual synchronous generator based-primary frequency regulation for renewable generation integrated into power system[J]. IET Generation, Transmission & Distribution, 2020, 14(20): 4435–4443. [24] 袁野, 程林, 孙元章, 等. 广域阻尼控制的时滞影响分析及时滞补偿设计[J]. 电力系统自动化, 2006, 30(14): 6–9 YUAN Ye, CHENG Lin, SUN Yuanzhang, et al. Effect of delayed input on wide-area damping control and design of compensation[J]. Automation of Electric Power Systems, 2006, 30(14): 6–9
|