中国电力 ›› 2025, Vol. 58 ›› Issue (7): 91-104.DOI: 10.11930/j.issn.1004-9649.202501032
马晓阳1(), 杨顺1(
), 刘宇2, 王晓冰3, 汪颖1(
)
收稿日期:
2025-01-08
发布日期:
2025-07-30
出版日期:
2025-07-28
作者简介:
基金资助:
MA Xiaoyang1(), YANG Shun1(
), LIU Yu2, WANG Xiaobing3, WANG Ying1(
)
Received:
2025-01-08
Online:
2025-07-30
Published:
2025-07-28
Supported by:
摘要:
虚拟同步发电机(virtual synchronous generator,VSG)在运行过程中会因为突变现象而出现系统分岔曲线改变和VSG电压骤降或骤升等问题,不利于VSG的稳定运行。针对这个问题,首先,建立了以直流母线电容器电压方程为摆幅方程的VSG数学模型;其次,基于分岔和突变理论分别讨论了在内部参数和外部运行工况变化下VSG中出现的突变现象并揭示了突变机制;然后,划分了参数稳定区域并用时域仿真验证了所划分区域的正确性;最后,分析了突变对VSG电压支撑能力的影响。结果表明,突变是通过鞍结分岔点发生的,不同参数变化引起的突变是不同的,当发生电压骤降的突变时,VSG电压支撑能力会提高;当发生电压骤升的突变时,VSG电压支撑能力会减弱;在参数稳定区域内,VSG不会出现突变现象。
中图分类号:
马晓阳, 杨顺, 刘宇, 王晓冰, 汪颖. 基于分岔和突变理论的VSG突变机理研究[J]. 中国电力, 2025, 58(7): 91-104.
MA Xiaoyang, YANG Shun, LIU Yu, WANG Xiaobing, WANG Ying. VSG Catastrophe Mechanism Based on Bifurcation and Catastrophe Theories[J]. Electric Power, 2025, 58(7): 91-104.
参数 | 数值 | |
R/mΩ | 100 | |
Y/S | 0.033 | |
C/μF | 240 | |
Dabc | 0.6 | |
uq/V | 1 | |
Zg/Ω | 100 |
表 1 仿真参数
Table 1 Simulation parameters
参数 | 数值 | |
R/mΩ | 100 | |
Y/S | 0.033 | |
C/μF | 240 | |
Dabc | 0.6 | |
uq/V | 1 | |
Zg/Ω | 100 |
案例 | 分岔点 | 突变位置 | 电压变化 | |||
Is=1 A | HB | |||||
Is=2 A | HB, SNB | ud= –1.661 V(正向) | 25.432→9.773 V | |||
ud = –1.695 V(反向) | 13.829→32.982 V | |||||
Is=3 A | HB, SNB | ud = –0.752 V(正向) | 43.651→3.609 V | |||
ud = –1.363 V(反向) | 9.821→71.256 V | |||||
L=0.023 H | HB | |||||
L=0.06 H | HB, SNB | ud = –0.368 V(正向) | 12.426→5.453 V | |||
ud = –0.383 V(反向) | 7.340→15.621 V | |||||
L=0.1 H | HB, SNB | ud =0.313 V(正向) | 14.423→1.455 V | |||
ud =0.057 V(反向) | 3.626→23.068 V | |||||
ξSCR=2.5 | HB | |||||
ξSCR=3 | HB | |||||
ξSCR=3.5 | HB, SNB | ud =1.419 V(正向) | 14.983→0.337 V | |||
ud =0.381 V(反向) | 1.677→26.918 V |
表 2 Is、L和ξSCR变化导致突变现象的结果
Table 2 Catastrophe results caused by Is, L and ξSCR changes
案例 | 分岔点 | 突变位置 | 电压变化 | |||
Is=1 A | HB | |||||
Is=2 A | HB, SNB | ud= –1.661 V(正向) | 25.432→9.773 V | |||
ud = –1.695 V(反向) | 13.829→32.982 V | |||||
Is=3 A | HB, SNB | ud = –0.752 V(正向) | 43.651→3.609 V | |||
ud = –1.363 V(反向) | 9.821→71.256 V | |||||
L=0.023 H | HB | |||||
L=0.06 H | HB, SNB | ud = –0.368 V(正向) | 12.426→5.453 V | |||
ud = –0.383 V(反向) | 7.340→15.621 V | |||||
L=0.1 H | HB, SNB | ud =0.313 V(正向) | 14.423→1.455 V | |||
ud =0.057 V(反向) | 3.626→23.068 V | |||||
ξSCR=2.5 | HB | |||||
ξSCR=3 | HB | |||||
ξSCR=3.5 | HB, SNB | ud =1.419 V(正向) | 14.983→0.337 V | |||
ud =0.381 V(反向) | 1.677→26.918 V |
1 | 程勇, 宋世雄, 赵建文. 基于改进双矢量模型预测控制的逆变器功率均分控制策略[J]. 电力建设, 2024, 45 (11): 137- 147. |
CHENG Yong, SONG Shixiong, ZHAO Jianwen. Inverter power equalization control strategy based on improved dual-vector model predictive control[J]. Electric Power Construction, 2024, 45 (11): 137- 147. | |
2 |
XIE C, LI K, ZOU J X, et al. Passivity-based stabilization of LCL-type grid-connected inverters via a general admittance model[J]. IEEE Transactions on Power Electronics, 2020, 35 (6): 6636- 6648.
DOI |
3 | 曹文君, 张岩, 张安彬, 等. 弱电网条件下分布式光伏并网系统谐振机理及影响特性[J]. 电力建设, 2024, 45 (3): 149- 159. |
CAO Wenjun, ZHANG Yan, ZHANG Anbin, et al. Resonance mechanism and influence characteristics of distributed photovoltaic grid-connected system under weak grid conditions[J]. Electric Power Construction, 2024, 45 (3): 149- 159. | |
4 | 邱晓燕, 闫幸, 周毅, 等. 基于自适应虚拟阻抗的构网型与跟网型逆变器主导微网系统无功功率均分控制策略[J]. 电力建设, 2024, 45 (1): 22- 32. |
QIU Xiaoyan, YAN Xing, ZHOU Yi, et al. Reactive power sharing control strategy for microgrids dominated by grid-forming and grid-following inverters based on adaptive virtual impedance[J]. Electric Power Construction, 2024, 45 (1): 22- 32. | |
5 | 梁伟, 吴林林, 赖启平, 等. 风电直流送出系统送端交流故障下风机过电压研究[J]. 中国电力, 2023, 56 (4): 28- 37. |
LIANG Wei, WU Linlin, LAI Qiping, et al. Study on overvoltage of wind farm under AC fault at sending end of HVDC transmission system[J]. Electric Power, 2023, 56 (4): 28- 37. | |
6 | 杨帆, 卫水平, 任意, 等. 变权-混合决策评估的复合功能并网逆变器多目标协同优化控制方法[J]. 中国电力, 2024, 57 (3): 113- 125. |
YANG Fan, WEI Shuiping, REN Yi, et al. Multi-objective collaborative optimization control method of composite function grid connected inverters considering variable weight hybrid decision evaluation[J]. Electric Power, 2024, 57 (3): 113- 125. | |
7 | 柳丹, 江克证, 康逸群, 等. 弱电网下新能源逆变器自同步电压源低电压穿越控制方法[J]. 中国电力, 2024, 57 (7): 21- 29. |
LIU Dan, JIANG Kezheng, KANG Yiqun, et al. Self-synchronization voltage source LVRT control method for new energy inverter under weak grid[J]. Electric Power, 2024, 57 (7): 21- 29. | |
8 | 刘彦军, 何维, 朱东海, 等. 基于二阶VSG的变换器频率支撑能力评估及提升方法[J]. 电力建设, 2024, 45 (11): 102- 113. |
LIU Yanjun, HE Wei, ZHU Donghai, et al. Evaluation and improving method of frequency support of converters based on second-order VSG section[J]. Electric Power Construction, 2024, 45 (11): 102- 113. | |
9 | 朱子民, 张锦芳, 常清, 等. 大规模新能源接入弱同步支撑柔直系统的送端自适应VSG控制策略[J]. 中国电力, 2024, 57 (5): 211- 221. |
ZHU Zimin, ZHANG Jinfang, CHANG Qing, et al. Adaptive VSG control strategy of sending end for large-scale renewable energy connected to weakly-synchronized support VSC-HVDC system[J]. Electric Power, 2024, 57 (5): 211- 221. | |
10 |
LIU J, LIU X Y, LIU J J, et al. Adaptive-droop-coefficient VSG control for cost-efficient grid frequency support[J]. IEEE Transactions on Power Systems, 2024, 39 (5): 6768- 6771.
DOI |
11 |
MENG X, LIU J J, LIU Z. A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control[J]. IEEE Transactions on Power Electronics, 2019, 34 (6): 5416- 5438.
DOI |
12 | 刘骜, 梅军, 刁伟业, 等. 强电网下考虑参数耦合影响的VSG功率振荡抑制策略[J/OL]. 电网技术, 2024: 1–12. (2024-12-27). https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2024.2051. |
LIU Ao, MEI Jun, DIAO Weiye, et al. VSG power oscillation suppression strategy considering parameter coupling effect under strong power grid[J/OL]. Power System Technology, 2024: 1–12. (2024-12-27). https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2024.2051. | |
13 | 闫来清, 邓熙炜, 赵喆, 等. 基于自适应前馈补偿的VSG功率解耦控制策略[J]. 电力系统保护与控制, 2024, 52 (24): 64- 73. |
YAN Laiqing, DENG Xiwei, ZHAO Zhe, et al. VSG power decoupling control strategy based on adaptive feedforward compensation[J]. Power System Protection and Control, 2024, 52 (24): 64- 73. | |
14 |
YU Y, GUAN Y J, KANG W F, et al. Fractional-order virtual synchronous generator[J]. IEEE Transactions on Power Electronics, 2023, 38 (6): 6874- 6879.
DOI |
15 |
QIN B S, XU Y H, YUAN C, et al. A unified method of frequency oscillation characteristic analysis for multi-VSG grid-connected system[J]. IEEE Transactions on Power Delivery, 2022, 37 (1): 279- 289.
DOI |
16 |
CHOOPANI M, HOSSEINIAN S H, VAHIDI B. New transient stability and LVRT improvement of multi-VSG grids using the frequency of the center of inertia[J]. IEEE Transactions on Power Systems, 2020, 35 (1): 527- 538.
DOI |
17 | 原宇腾, 肖凡, 涂春鸣, 等. SVG与VSG混合系统暂态稳定区间刻画与协同控制策略[J/OL]. 电网技术, 2024: 1–11. (2024-11-21). https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2024.1240. |
2024-11-21). https: //link. cnki. net/doi/10.13335/j. 1000-3673. pst. 2024.1240. YUAN Yuteng, XIAO Fan, TU Chunming, et al. Transient stability interval characterization and cooperative control strategy for SVG and VSG hybrid system with distributed power supply[J/OL]. Power System Technology, 2024: 1–11. (2024-11-21). https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2024.1240. | |
18 |
ME S P, RAVANJI M H, MANSOUR M Z, et al. Transient stability of paralleled virtual synchronous generator and grid-following inverter[J]. IEEE Transactions on Smart Grid, 2023, 14 (6): 4451- 4466.
DOI |
19 | WANG D D, ZHANG B, QIU D Y, et al. On the super-Lorenz chaotic model for the virtual synchronous generator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65 (4): 511- 515. |
20 |
ELADANY M M, ELDESOUKY A A, SALLAM A A. Power system transient stability: an algorithm for assessment and enhancement based on catastrophe theory and FACTS devices[J]. IEEE Access, 2018, 6, 26424- 26437.
DOI |
21 |
HUANG Y, IWAMOTO S. Analysis of a possible reason for oscillation phenomena in a diesel-generator set through catastrophe theory[J]. IEEE Transactions on Energy Conversion, 1995, 10 (4): 700- 705.
DOI |
22 |
CHANDRASEKARAN A, SHTYK A, BETOURAS J J, et al. Catastrophe theory classification of Fermi surface topological transitions in two dimensions[J]. Physical Review Research, 2020, 2 (1): 013355.
DOI |
23 |
LIANG J Y, LONG D, WANG M, et al. Observation of limit torus and catastrophe point in optomechanical systems[J]. New Journal of Physics, 2024, 26 (10): 103001.
DOI |
24 |
HUANG W K, ZHOU F B, ZOU T, et al. Alternating positive and negative feedback control model based on catastrophe theories[J]. Mathematics, 2021, 9 (22): 2878.
DOI |
25 | TOURANDAZ KENARI M, SEPASIAN M S, SETAYESH NAZAR M. Probabilistic assessment of static voltage stability in distribution systems considering wind generation using catastrophe theory[J]. IET Generation, Transmission & Distribution, 2019, 13(13): 2856–2865. |
26 |
SALLAM A A, DINELEY J L. Catastrophe theory as a tool for determining synchronous power system dynamic stability[J]. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102 (3): 622- 630.
DOI |
27 |
TRIPATHY S C. Transient stability analysis of multimachine power system using swallowtail catastrophe model[J]. Energy Conversion and Management, 1998, 39 (12): 1247- 1253.
DOI |
28 |
LIU W Y, GE R D, LV Q C, et al. Research on a small signal stability region boundary model of the interconnected power system with large-scale wind power[J]. Energies, 2015, 8 (4): 2312- 2336.
DOI |
29 |
ZHAO S Y, SU X P, LI J H, et al. Research on wind power project risk management based on structural equation and catastrophe theory[J]. Sustainability, 2023, 15 (8): 6622.
DOI |
30 | 马晓阳, 赵阳俊, 梁锦文, 等. 多时滞风电系统的小信号多连通稳定区域划分[J]. 电力系统自动化, 2025, 49 (3): 71- 81. |
MA Xiaoyang, ZHAO Yangjun, LIANG Jinwen, et al. Small-signal multiply connected stability region partition for multi-time-delay wind power system[J]. Automation of Electric Power Systems, 2025, 49 (3): 71- 81. | |
31 | 孔贺, 侯山, 赵弋菡, 等. 低电压穿越控制诱导的陆上风电场电压振荡的分岔分析及其判据研究[J]. 中国电机工程学报, 2024, 44 (21): 8475- 8488. |
KONG He, HOU Shan, ZHAO Yihan, et al. Bifurcation analysis and criteria of voltage oscillation induced by low voltage ride through control in onshore wind farms[J]. Proceedings of the CSEE, 2024, 44 (21): 8475- 8488. | |
32 |
CHEN Y H, PREECE R, BARNES M. Identifying feasibility region boundaries in power systems with multiple VSCs[J]. IEEE Transactions on Power Systems, 2023, 38 (2): 1229- 1241.
DOI |
33 | 纪君奇, 杨黎晖, 马西奎. 基于虚拟同步发电机控制的并网逆变器切换型振荡及其非光滑分岔特性[J]. 电工技术学报, 2024, 39 (24): 7860- 7873. |
JI Junqi, YANG Lihui, MA Xikui. Switched oscillation and its non-smooth bifurcation characteristics in grid-connected inverter based on virtual synchronous generator control[J]. Transactions of China Electrotechnical Society, 2024, 39 (24): 7860- 7873. | |
34 | ZHANG S H, ZHANG H L, WANG C, et al. Bursting oscillations and bifurcation mechanism in a permanent magnet synchronous motor system with external load perturbation[J]. Chaos, Solitons & Fractals, 2020, 141: 110355. |
35 |
ZHI Y, WAJID H, VENKATASUBRAMANIAN V M, et al. Computational methods for nonlinear analysis of Hopf bifurcations in power system models[J]. Electric Power Systems Research, 2022, 212, 108574.
DOI |
36 |
晁凯云, 苗世洪, 刘子文, 等. 基于虚拟同步电机控制的微电网稳定性分析[J]. 电力系统保护与控制, 2019, 47 (3): 9- 16.
DOI |
CHAO Kaiyun, MIAO Shihong, LIU Ziwen, et al. Stability analysis of microgrid based on virtual synchronous generator control[J]. Power System Protection and Control, 2019, 47 (3): 9- 16.
DOI |
|
37 | 薛安成, 王嘉伟, 刘晓博, 等. 简化单机水电系统负阻尼时频率振荡的类Hopf非光滑分岔分析[J]. 中国电机工程学报, 2022, 42 (14): 5103- 5113. |
XUE Ancheng, WANG Jiawei, LIU Xiaobo, et al. Hopf-like non-smooth bifurcation analysis of frequency oscillation in simplified single hydropower generator system with negative damping[J]. Proceedings of the CSEE, 2022, 42 (14): 5103- 5113. | |
38 |
ZUO H Y, LIU G L, E J Q, et al. Catastrophic analysis on the stability of a large dish solar thermal power generation system with wind-induced vibration[J]. Solar Energy, 2019, 183, 40- 49.
DOI |
39 | 洪镇堃, 占萌. 构网型变流器并网系统在强弱电网下的分岔分析[J]. 电力自动化设备, 2023, 43 (9): 27- 32, 54. |
HONG Zhenkun, ZHAN Meng. Bifurcation analysis of grid-forming converter system connected with stiff or weak AC grids[J]. Electric Power Automation Equipment, 2023, 43 (9): 27- 32, 54. |
[1] | 朱子民, 张锦芳, 常清, 周专, 张晓林. 大规模新能源接入弱同步支撑柔直系统的送端自适应VSG控制策略[J]. 中国电力, 2024, 57(5): 211-221. |
[2] | 郭小龙, 张江飞, 亢朋朋, 杨桂兴, 孙谊媊, 袁铁江, 刘勇. 含基于PI控制受端二次调频的特高压直流虚拟同步控制策略[J]. 中国电力, 2022, 55(11): 66-72. |
[3] | 张义, 胡正阳, 彭佩佩, 陈宁, 唐冰婕, 高丙团. 基于极点配置的新能源并网附加阻尼控制策略[J]. 中国电力, 2021, 54(10): 217-222. |
[4] | 袁义桃, 康积涛, 吴小刚, 李亚辉. 含双馈风电机的电力系统电压稳定性分岔分析[J]. 中国电力, 2014, 47(3): 42-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||