[1] 夏水斌, 余鹤, 何行, 等. 水电气多表合一数据自动采集系统设计[J]. 计算机测量与控制, 2018, 26(3): 141–144, 149 XIA Shuibin, YU He, HE Xing, et al. Design of automatic data acquisition system for water and electrical multimeter data[J]. Computer Measurement & Control, 2018, 26(3): 141–144, 149 [2] 李然, 刘宣, 唐悦, 等. "多表合一"采集终端功能检测系统设计与应用[J]. 电测与仪表, 2019, 56(15): 148–152 LI Ran, LIU Xuan, TANG Yue, et al. Design and application of multi-meter unification acquisition terminal function detection system[J]. Electrical Measurement & Instrumentation, 2019, 56(15): 148–152 [3] 刘南艳, 贺敏, 赵建文. 基于大数据平台的电力负荷预测[J]. 现代电子技术, 2018, 41(20): 153–156 LIU Nanyan, HE Min, ZHAO Jianwen. Power load prediction based on big data platform[J]. Modern Electronics Technique, 2018, 41(20): 153–156 [4] 李俊楠, 李伟, 李会君, 等. 基于大数据云平台的电力能源大数据采集与应用研究[J]. 电测与仪表, 2019, 56(12): 104–109 LI Junnan, LI Wei, LI Huijun, et al. Research on big data acquisition and application of power energy based on big data cloud platform[J]. Electrical Measurement & Instrumentation, 2019, 56(12): 104–109 [5] 郭泽宇, 陈玲俐. 城市用水量组合预测模型及其应用[J]. 水电能源科学, 2018, 36(1): 40–43 GUO Zeyu, CHEN Lingli. Combination prediction model of urban water supply and its application[J]. Water Resources and Power, 2018, 36(1): 40–43 [6] 史佳琪, 谭涛, 郭经, 等. 基于深度结构多任务学习的园区型综合能源系统多元负荷预测[J]. 电网技术, 2018, 42(3): 698–707 SHI Jiaqi, TAN Tao, GUO Jing, et al. Multi-task learning based on deep architecture for various types of load forecasting in regional energy system integration[J]. Power System Technology, 2018, 42(3): 698–707 [7] 董雪梅, 王洁微. 基于多尺度高斯核的分布式正则化回归学习算法[J]. 模式识别与人工智能, 2019, 32(7): 589–599 DONG Xuemei, WANG Jiewei. Distributed regularized regression learning algorithm based on multi-scale Gaussian kernels[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(7): 589–599 [8] 夏成希, 李泽, 刘畅, 等. 随机子空间集成下的GPR光伏发电预测方法[J]. 计算机仿真, 2019, 36(11): 79–84 XIA Chengxi, LI Ze, LIU Chang, et al. GPR photovoltaic power generation forecasting method based on stochastic subspace integration[J]. Computer Simulation, 2019, 36(11): 79–84 [9] SAHOO D, HOI S C H, LI B. Large scale online multiple kernel regression with application to time-series prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(1): 1–33. [10] 顾熹, 廖志伟. 基于相空间重构和高斯过程回归的短期负荷预测[J]. 电力系统保护与控制, 2017, 45(5): 73–79 GU Xi, LIAO Zhiwei. Short-term load forecasting based on phase space reconstruction and Gaussian process regression[J]. Power System Protection and Control, 2017, 45(5): 73–79 [11] 涂智福, 丁坚勇, 周凯. 基于VMD和GP的短期风电功率置信区间预测[J]. 电测与仪表, 2020, 57(1): 84–88 TU Zhifu, DING Jianyong, ZHOU Kai. Confidence interval prediction of short-term wind power based on VMD and GP[J]. Electrical Measurement & Instrumentation, 2020, 57(1): 84–88 [12] 刘升伟, 王星华, 鲁迪, 等. 基于改进高斯过程回归的短期负荷概率区间预测方法[J]. 电力系统保护与控制, 2020, 48(1): 18–25 LIU Shengwei, WANG Xinghua, LU Di, et al. Electric load probabilistic interval prediction method based on improved Gaussian process regression[J]. Power System Protection and Control, 2020, 48(1): 18–25 [13] 任利强, 张立民, 王海鹏, 等. 基于IPSO-GPR的短期负荷区间预测[J]. 计算机工程与设计, 2019, 40(10): 3002–3008 REN Liqiang, ZHANG Limin, WANG Haipeng, et al. Short-term power load interval forecasting based on improved particle swarm optimization and Gaussian process regression[J]. Computer Engineering and Design, 2019, 40(10): 3002–3008 [14] WU A, ROY N A, KEELEY S, et al. Gaussian process based nonlinear latent structure discovery in multivariate spike train data[J]. Advances in Neural Information Processing Systems, 2017, 30: 3496–3505. [15] 何奇峰. 考虑季节性和趋势性影响的时空数据异常值检测研究[D]. 北京: 北京邮电大学, 2018. HE Qifeng. A study on outlier detection of seasonal and trendy spatial-temporal data[D]. Beijing: Beijing University of Posts and Telecommunications, 2018. [16] 范兴明, 王超, 张鑫, 等. 基于增量学习相关向量机的锂离子电池SOC预测方法[J]. 电工技术学报, 2019, 34(13): 2700–2708 FAN Xingming, WANG Chao, ZHANG Xin, et al. A prediction method of Li-ion batteries SOC based on incremental learning relevance vector machine[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2700–2708 [17] 燕彩蓉, 张青龙, 赵雪, 等. 基于广义高斯分布的贝叶斯概率矩阵分解方法[J]. 计算机研究与发展, 2016, 53(12): 2793–2800 YAN Cairong, ZHANG Qinglong, ZHAO Xue, et al. A method of Bayesian probabilistic matrix factorization based on generalized Gaussian distribution[J]. Journal of Computer Research and Development, 2016, 53(12): 2793–2800 [18] 邴其春, 龚勃文, 杨兆升, 等. 一种组合核相关向量机的短时交通流局域预测方法[J]. 哈尔滨工业大学学报, 2017, 49(3): 144–149 BING Qichun, GONG Bowen, YANG Zhaosheng, et al. A short-term traffic flow local prediction method of combined kernel function relevance vector machine[J]. Journal of Harbin Institute of Technology, 2017, 49(3): 144–149 [19] 高国强, 杨飞豹, 尹豪杰, 等. 基于代价敏感组合核相关向量机的电力变压器故障诊断[J]. 电测与仪表, 2017, 54(16): 7–13 GAO Guoqiang, YANG Feibao, YIN Haojie, et al. Transformer fault diagnosis based on cost-sensitive multi-kernel learning relevance vector machine[J]. Electrical Measurement & Instrumentation, 2017, 54(16): 7–13 [20] 田壁源, 刘琪, 张新燕, 等. 基于APSO-GSA和相关向量机的短期风电功率预测[J]. 电力系统保护与控制, 2020, 48(2): 107–114 TIAN Biyuan, LIU Qi, ZHANG Xinyan, et al. Short-term wind power prediction based on APSO-GSA and correlation vector machine[J]. Power System Protection and Control, 2020, 48(2): 107–114 [21] MALLASTO A, FERAGEN A. Wrapped Gaussian process regression on Riemannian manifolds[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 5580–5588. [22] 张旭东, 李飞, 刘迪, 等. 基于CNN的产消群需求响应滚动优化策略[J]. 中国电力, 2021, 54(2): 78–89 ZHANG Xudong, LI Fei, LIU Di, et al. CNN-based rolling optimization strategy for prosumer group in demand response[J]. Electric Power, 2021, 54(2): 78–89 [23] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[EB/OL]. (2020-07-05) [2020-10-26]. https://www.researchgate.net/publication/347125466_Informer_Beyond_Efficient_Transformer_for_Long_Sequence_Time-Series_Forecasting. [24] 张志, 杜延菱, 崔慧军, 等. 考虑关联因素的智能化中长期电力负荷预测方法[J]. 电力系统保护与控制, 2019, 47(2): 24–30 ZHANG Zhi, DU Yanling, CUI Huijun, et al. Intelligent mid-long electricity load forecast method considering associated factors[J]. Power System Protection and Control, 2019, 47(2): 24–30 [25] 雷铮, 田书欣, 闫大威, 等. 基于ARIMA-TARCH-BP神经网络模型的中长期负荷预测方法[J]. 电子器件, 2020, 43(1): 175–179 LEI Zheng, TIAN Shuxin, YAN Dawei, et al. Mid-long term load forecasting based on ARIMA-TARCH-BP neural network model[J]. Chinese Journal of Electron Devices, 2020, 43(1): 175–179 [26] 孙兴鲁. 主动配电网鲁棒运行优化技术研究[D]. 广州: 华南理工大学, 2018. SUN Xinglu. Research on robust operational optimization technology of active distribution network[D]. Guangzhou: South China University of Technology, 2018. [27] 欧阳森, 杨家豪, 安晓华, 等. 基于时段解耦的含特殊负荷的配电网动态无功优化[J]. 华南理工大学学报(自然科学版), 2016, 44(2): 97–106 OUYANG Sen, YANG Jiahao, AN Xiaohua, et al. Dynamic reactive power optimization of distribution network containing special load based on time decoupling[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(2): 97–106
|