中国电力 ›› 2013, Vol. 46 ›› Issue (10): 115-118.DOI: 10.11930/j.issn.1004-9649.2013.10.115.3

• 电力规划 • 上一篇    下一篇

基于双修正因子的模糊时间序列日最大负荷预测

刘晓娟1, 2, 方建安1   

  1. 1. 东华大学 信息科学与技术学院,上海 201620; 2. 上海电力学院 数理学院,上海 201300
  • 收稿日期:2013-05-26 出版日期:2013-10-23 发布日期:2015-12-10
  • 作者简介:刘晓娟(1977—),女,山东高密人,博士研究生,讲师,从事电力系统优化及控制技术研究。
  • 基金资助:
    国家自然科学基金青年项目(61203006)

LIU Xiao-juan1,2, FANG Jian-an1

1. College of Information Science & Technology, Donghua University, Shanghai201620, China;   

  1. 2. School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201300, China
  • Received:2013-05-26 Online:2013-10-23 Published:2015-12-10

摘要: 天气温度变化是影响短期电力负荷预测的主要因素。为提高预测精度,引入负荷变化影响因子和气温影响因子,提出基于双修正因子的模糊时间序列预测算法。根据负荷变化趋势,提出分段预测的思想,在拐点处用负荷变化因子进行修正,然后用气温影响因子对预测结果进行二次修正。将改进的算法用于某电网夏季最大负荷的预测,数值结果表明该算法具有较高的预测精度。

关键词: 电力系统, 负荷预测, 模糊时间序列, 负荷变化影响因子, 气温影响因子

Abstract: Weather temperature is the main factor to affect the short-term power load forecasting. In order to improve the accuracy of the forecast, a bi-factor revised fuzzy time series model is proposed for maximum load forecasting. The influence factors of power load trend and temperature are introduced into the conventional fuzzy time series forecasting algorithms to correct the forecasting results. The segmented prediction idea is proposed in accordance with the trend of the load changes. Correction is made at the inflection point by load trend factor, and temperature influence factor is used for secondary correction on the predicted results. The model was applied to the Suzhou Grid for the maximum load prediction in summer and the results show that the model has a better prediction accuracy.

Key words: electric power system, load forecasting, fuzzy time series, load trend factor, weather temperature influence factor

中图分类号: