中国电力 ›› 2025, Vol. 58 ›› Issue (3): 168-174.DOI: 10.11930/j.issn.1004-9649.202406064

• 新型电网 • 上一篇    下一篇

基于数据驱动时空网络的城市中长期电力负荷预测

孙庆超1(), 李嘉靓1(), 江万里1(), 王若愚1(), 李植鹏1(), 胡亚荣1(), 朱健斌2()   

  1. 1. 深圳供电局有限公司,广东 深圳 518000
    2. 广东工业大学 自动化学院,广东 广州 510006
  • 收稿日期:2024-06-19 出版日期:2025-03-28 发布日期:2025-03-26
  • 作者简介:
    孙庆超(1990),男,工程师,从事电网规划研究,E-mail:504008805@qq.com
    朱健斌(1999),男,通信作者,硕士研究生,从事人工智能在电力系统中的应用研究,E-mail:1042598081@qq.com
  • 基金资助:
    国家自然科学基金资助项目(62276068)。

Mid-long Term Urban Power Load Forecasting Based on Data-Driven Spatio-temporal Networks

Qingchao SUN1(), Jialiang LI1(), Wanli JIANG1(), Ruoyu WANG1(), Zhipeng LI1(), Yarong HU1(), Jianbin ZHU2()   

  1. 1. Shenzhen Power Supply Bureau Co., Ltd., Shenzhen 518000, China
    2. Automation College, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2024-06-19 Online:2025-03-28 Published:2025-03-26
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.62276068).

摘要:

为了保障城市电网规划质量和做好电力电量平衡,准确的中长期电力负荷预测变得尤为重要。针对现有方法在利用城市区域间空间关联性方面的不足,提出了一种基于动态时间规整(dynamic time warping,DTW)和时空注意力图卷积(spatio-temporal attention graph convolution,ASTGCN)的预测方法。首先,通过深入分析目标城市各区域间的相关性,建立了耦合关系;其次,利用DTW算法构建邻接矩阵,捕捉城市各区域间的时空相关性;然后,应用ASTGCN模型预测各区域的负荷,以捕捉负荷的时空特征;最后,通过合并各区域的预测结果,得到整体的城市预测负荷。实验结果表明:所提方法能够更全面地捕捉城市中的时空关系,显著提高中长期负荷预测精度。

关键词: 中长期负荷预测, 相关性分析, 时空图卷积网络

Abstract:

In order to ensure the quality of urban power grid planning and balance the power and electricity, accurate medium and long-term load forecasting becomes particularly. In view of the shortcomings of existing methods in utilizing the spatial correlation between urban areas, a prediction method based on dynamic time warping (DTW) and sp-temporal attention graph convolution (ASTGCN) is proposed. Firstly, the correlation between different regions in the target city is deeply analyzed to establish a coupling relationship., the DTW algorithm is used to construct an adjacency matrix to capture the spatiotemporal correlation between different regions in the city. Then, the ASTGC model is applied to predict the load of each region to capture the spatiotemporal characteristics of the load. Finally, the overall urban prediction load is obtained by the prediction results of each region. The experimental results show that the proposed method can capture the spatiotemporal relationship in the city more comprehensively and significantly improve accuracy of medium and long-term load forecasting.

Key words: mid-long term load forecasting, correlation analysis, spatio-temporal graphical convolutional networks