[1] KUSIAK A, ZHANG Zijun. Short-horizon prediction of wind power: a data-driven approach[J]. IEEE Transactions on Energy Conversion, 2010, 25(4): 1112-1122. [2] 田超,陈颖,张贲,等. 京津唐电网风电场群发电功率短期预测[J]. 中国电力,2013,46(9):65-70. TIAN Chao, CHEN Ying, ZHANG Ben, et al. Short-term forecasting of wind farm groups in Beijing-Tianjin-Tangshan power grid [J]. Electric Power, 2013, 46(9): 65-70. [3] 王铮,王伟胜,刘纯,等. 基于风过程方法的风电功率预测结果不确定性估计[J]. 电网技术,2013,37(1):242-247. WANG Zheng, WANG Weisheng, LIU Chun, et al. Uncertainty estimation of wind power prediction result based on wind process method [J]. Power System Technology, 2013, 37(1): 242-247. [4] 杨秀媛,肖洋,陈树勇. 风电场风速和发电功率预测研究[J]. 中国电机工程学报,2005,25(11):1-5. YANG Xiuyuan, XIAO Yang, CHEN Shuyong. Wind speed and generated power forecasting in wind farm[J]. Proceedings of the CSEE, 2005, 25(11): 1-5. [5] 杨茂,马秀达,温道扬,等. 风电功率预测研究综述[J]. 电测与仪表,2013,50(7):7-10, 89. YANG Mao, MA Xiuda, WEN Daoyang, et al. Review of wind power prediction[J]. Electrical Measurement & Instrumentation, 2013, 50(7): 7-10, 89. [6] 张娜,王守相,王亚旻. 基于掩模经验模态分解的风速组合预测模型[J]. 中国电力,2014,47(5):129-135. ZHANG Na, WANG Shouxiang, WANG Yamin. Wind speed forecasting modelling by combination of masking signal based empirical mode decomposition and GA-BP neural network[J].Electric Power, 2014, 47(5): 129-135. [7] 杨茂,季本明. 基于局域一阶加权法的风电功率超短期预测研究[J]. 东北电力大学学报,2015,35(5):6-10. YANGMao, JI Benming. The ultra-short-term forecasting of wind power based on local one-order weighted method[J]. Journal of Northeast Dianli University, 2015, 35(5): 6-10. [8] 杨茂,孙涌,孙兆键,等. 风电场大规模数据管理系统设计与研发[J]. 东北电力大学学报,2014,34(2):27-31. YANG Mao, SUN Yong, SUN Zhaojian, et al. Design and development of large-scale data management system of wind farm[J]. Journal of Northeast Dianli University, 2013, 34(2): 27-31. [9] 南晓强,李群湛,邱大强. 基于符号时间序列法的风电功率波动分析与预测[J]. 中国电力,2013,46(6):75-79. NAN Xiaoqiang, LI Qunzhan, QIU Daqiang. Analysis and forecast of wind power fluctuation based on symbolized time series theory[J]. Electric Power, 2013, 46(6): 75-79. [10] 叶林,刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报,2011,31(31):102-108. YE Lin, LIU Peng. Combined model based on EMD-SVM for short-term wind power prediction [J]. Proceedings of CSEE, 2011, 31(31): 102-108. [11] 杨茂,熊昊,严干贵,等. 基于数据挖掘和模糊聚类的风电功率实时预测研究[J]. 电力系统保护与控制,2013,41(1):1-6. YANG Mao, XIONG Hao, YAN Gangui, et al. Real-time prediction of wind power based on data mining and fuzzy clustering[J]. Power System Protection and Control, 2013, 41(1):1-6. [12] WANG Jianzhou, WANG Yun, JIANG Ping. The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in China[J]. Applied Energy, 2015, 143: 472-488. [13] 刘兴杰,岑添云,郑文书,等. 基于模糊粗糙集与改进聚类的神经网络风速预测[J]. 中国电机工程学报,2014,34(19):3162-3169. LIU Xingjie, CEN Tianyun, ZHENG Wenshu, et al. Neural network wind speed prediction based on fuzzy rough set and improved clustering[J]. Proceedings of CSEE, 2014, 34(19): 3162-3169. [14] 范高锋,王伟胜,刘纯,等. 基于人工神经网络的风电功率预测[J]. 中国电机工程学报,2008,28(34):118-123. FAN Gaofeng, WANG Weisheng, LIU Chun, et al. Artificial neural network based wind power short term Prediction system[J]. Proceedings of CSEE, 2008, 28(34): 118-123. [15] GUO Z, ZHAO W, LU H, et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model [J]. Renewable Energy, 2012, 37(1): 241-249. [16] 叶林,赵永宁. 基于空间相关性的风电功率预测研究综述[J]. 电力系统自动化,2014,38(14):126-135. YE Lin, ZHAO Yongning. A review of wind power prediction based on spatial correlation approach, 2014, 38(14): 27-34. [17] 杨正瓴,冯勇,熊定方,等. 基于季风特性改进风电功率预测的研究展望[J]. 智能电网,2015,3(1):1-7. YANG Zhengling, FENG Yong, XIONG Dingfang, et al. Research prospects of improvement in wind power forecasting based on characteristics of monsoons [J]. Smart Grid, 2015, 3(1): 1-7. [18] FAYYAD U, PIATETSKY-SHAPIRO G, SMYTH P. The KDD process for extracting useful knowledge from volumes of data [J]. Communications of the ACM, 1996, 39(11): 27-34. [19] 国家能源局. 风电场功率预测预报管理暂行办法[R]. 北京: 国家能源局,2011. [20] 严干贵,王东,杨茂,等. 两种风电功率多步预测方式的分析及评价[J]. 东北电力大学学报,2013,33(1):126-130. YAN Gangui, WANG Dong, YANG Mao, et al. The analysis and evaluation of two ways for multi-step wind power prediction [J]. Journal of Northeast Dianli University, 2013, 33(1): 126-130. |