[1] 王艳,杨德全. 基于EMD-ESNs的光伏系统短期发电量预测[J].可再生能源,2014,32(10):1436-1440. WANG Yan, YANG Dequan. Short-term generation forecasting for photovoltaic system based on EMD-ESNs[J]. Renewable Energy Resources, 2014, 32(10): 1436-1440. [2] 丁明,王伟胜,王秀丽,等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报,2014,34(1):1-14. DING Ming, WANG Weisheng, WANG Xiuli, et al. A review on the effect of large-scale PV generation on power systems[J].Proceedings of the CSEE, 2014, 34(1): 1-14. [3] 张曦,康重庆,张宁,等. 太阳能光伏发电的中长期随机特性分析[J]. 电力系统自动化,2014,38(6):6-13. ZHANG Xi, KANG Chongqing, ZHANG Ning, et al. Analysis of mid-long term random characteristics of photovoltaic power generation [J]. Automation of Electric Power Systems, 2014, 38(6): 6-13. [4] 赵杰,张艳霞. 基于CAPSO-RNN的光伏系统短期发电量预测[J]. 中国电力,2012,45(4):87-90. ZHAO Jie, ZHANG Yanxia. Short-term generation forecasting for photovoltaic system based on CAPSO-RNN algorithm [J]. Electric Power, 2012, 45(4): 87-90. [5] 杨超颖,王金浩,王硕,等. 基于拟牛顿法小波神经网络的光伏发电系统短期功率预测模型[J]. 中国电力,2014,47(6):117-124. YANG Chaoying, WANG Jinhao, WANG Shuo, et al. A forecasting method of short-term power output of photovoltaic system based on wavelet neural network trained by Quasi-Newton method [J]. Electric Power, 2014, 47(6): 117-124. [6] 杨德全,王艳,焦彦军. 基于小波神经网络的光伏系统发电量预测[J]. 可再生能源,2013,31(7):1-5. YANG Dequan, WANG Yan, JIAO Yanjun. Generation forecasting for photovoltaic system based on wavelet neural networks[J].Renewable Energy Resources, 2013, 31(7): 1-5. [7] 茆美琴,龚文剑,张榴晨,等. 基于EEMD-SVM方法的光伏电站短期出力预测[J]. 中国电机工程学报,2013,33(34):17-24. MAO Meiqin, GONG Wenjian, ZHANG Liuchen, et al. Short- term photovoltaic generation forecasting based on EEMD-SVM combined method [J]. Proceedings of the CSEE, 2013, 33(34): 17-24. [8] 王飞,米增强,甄钊,等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学报,2013,33(34):75-82. WANG Fei, MI Zengqiang, ZHEN Zhao, et al. A classified forecasting approach of power generation for photovoltaic plants based on weather condition pattern recognition [J]. Proceedings of the CSEE, 2013, 33(34): 75-82. [9] 董雷,周文萍,张沛,等. 基于动态贝叶斯网络的光伏发电短期概率预测[J]. 中国电机工程学报,2013,33(S1):38-45. DONG Lei, ZHOU Wenping, ZHANG Pei, et al. Short-term photovoltaic output forecast based on dynamic bayesian network theory [J]. Proceedings of the CSEE, 2013, 33(S1): 38-45. [10] 毛李帆,姚建刚,金永顺,等. 中长期电力组合预测模型的理论研究[J]. 中国电机工程学报,2010,30(16):53-59. MAO Lifan, YAO Jiangang, JIN yongshun, et al. Theoretica study of combination model for medium and long term load forecasting [J]. Proceeding of the CSEE, 2010, 30(16): 53-59. [11] 周湶,任海军,李健,等. 层次结构下的中长期电力负荷变权组合预测方法[J]. 中国电机工程学报,2010,30(16):47-52. ZHOU Quan, REN Haijun, LI Jian, et al. Variable weight combination method for mid-long term power load forecasting based on hierarchical structure[J]. Proceedings of the CSEE, 2010, 30(16): 47-52. [12] 周洪煜,赵乾,王照阳,等. 风电机组输出功率超短期预测的组合模型研究[J]. 太阳能学报,2014,35(3):457-461. ZHOU Hongyu, ZHAO Qian, WANG Zhaoyang, et al. Very short- term wind turbine output forecasting with compositional model[J].Acta Energiae Solaris Sinica, 2014, 35(3): 457-461. [13] 杨锡运,刘欢,张彬,等. 基于熵权法的光伏输出功率组合预测模型[J]. 太阳能学报,2014,35(5):744-749. YANG Xiyun, LIU Huan, ZHANG Bin, et al. A combination method for photovoltaic power forecasting based on entropy weight method [J]. Acta Energiae Solaris Sinica, 2014, 35(5):744-749. [14] 刘兴杰,岑添云,郑文书,等. 基于模糊粗糙集与改进聚类的神经网络风速预测[J]. 中国电机工程学报,2014,34(19):3162-3169. LIU Xingjie, CEN Tianyun, ZHENG Wenshu, et al. Neural network wind speed prediction based on fuzzy rough set and improved clustering[J]. Proceedings of the CSEE, 2014, 34(19):3162-3169. [15] 高爽,冬雷,高阳,等. 基于粗糙集理论的中长期风速预测[J].中国电机工程学报,2012,32(1):32-37. GAO Shuang, DONG Lei, GAO Yang, et al. Mid-long term wind speed prediction based on rough set theory [J]. Proceedings of the CSEE, 2012, 32(1): 32-37. [16] 庞清乐. 基于粗糙集理论的神经网络预测算法及其在短期负荷预测中的应用[J]. 电网技术,2010,34(12):168-173. PANG Qingle. A rough set-based neural network load forecasting algorithm and its application in short-term load forecasting[J].Power System Technology, 2010, 34(12): 168-173. [17] 杨锡运,刘欢,张彬,等. 组合权重相似日选取方法及光伏输出功率预测[J]. 电力自动化设备,2014,34(9):118-122. YANG Xiyun, LIU Huan, ZHANG Bin, et al. Similar day selection based on combined weight and photovoltaic power output forecasting[J]. Electric Power Automation Equipment, 2014, 34(9): 118-122. [18] 王晓兰,葛鹏江. 基于相似日和径向基函数神经网络的光伏阵列输出功率预测[J]. 电力自动化设备,2013,33(1):100-103, 109. WANG Xiaolan, GE Pengjiang. PV array output power forecasting based on similar day and RBFNN[J]. Electric Power Automation Equipment, 2013, 33(1): 100-103, 109. [19] 朱永强,田军. 最小二乘支持向量机在光伏功率预测中的应用[J]. 电网技术,2011,35(7):54-59. ZHU Yongqiang, TIAN Jun. Application of least square support vector machine in photovoltaic power forecasting [J]. Power System Technology, 2011, 35(7): 54-59. [20] 罗毅,邢校萄. 基于小波变换和支持向量机的短期光伏发电功率预测[J]. 新能源进展,2014,2(5):380-384. LUO Yi, XING Xiaotao. Short-term forecasting of photovoltaic power generation based on wavelet decomposition and support vector machine[J]. Advances in New and Renewable Energy,2014, 2(5): 380-384. [21] 栗然,柯拥勤,张孝乾,等. 基于时序-支持向量机的风电场发电功率预测[J]. 中国电力,2012,45(1):64-68. LI Ran, KE Yongqin, ZHANG Xiaoqian, et al. Wind power forecasting based on time series and SVM[J]. Electric Power, 2012, 45(1): 64-68. |