中国电力 ›› 2023, Vol. 56 ›› Issue (10): 186-193.DOI: 10.11930/j.issn.1004-9649.202306038

• 新能源 • 上一篇    下一篇

基于周期信息增强的Informer光伏发电功率预测

张倩1(), 蒙飞1(), 李涛1(), 杨勇2, 白鹭1   

  1. 1. 国网宁夏电力有限公司调度控制中心,宁夏 银川 750001
    2. 国网宁夏电力有限公司宁东供电公司,宁夏 灵武 750004
  • 收稿日期:2023-06-11 出版日期:2023-10-28 发布日期:2023-10-31
  • 作者简介:张倩(1984—),女,高级工程师,从事电力系统及其自动化研究,E-mail: 15909615460@163.com
    蒙飞(1987—),男,通讯作者,高级工程师,从事电网调控运行研究,E-mail: 474504618@qq.com
    李涛(1984—),男,高级工程师,从事电网调控运行研究,E-mail: 76643423@qq.com
  • 基金资助:
    宁夏回族自治区自然科学基金资助项目(2023AAC03853)

Informer Photovoltaic Power Generation Forecasting Based on Cycle Information Enhancement

Qian ZHANG1(), Fei MENG1(), Tao LI1(), Yong YANG2, Lu BAI1   

  1. 1. Dispatching & Control Center, State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750001, China
    2. State Grid Ningxia Ningdong Power Supply Company, Lingwu 750004, China
  • Received:2023-06-11 Online:2023-10-28 Published:2023-10-31
  • Supported by:
    This work is supported by Natural Science Foundation of Ningxia Hui Autonomous Region (No.2023AAC03853).

摘要:

针对光伏发电功率预测方法难以捕捉层次时序信息导致预测精度提升受限的问题,提出基于周期信息增强的Informer光伏发电功率预测方法。首先,提取光伏发电功率序列标量投影、局部时间戳和全局时间戳建立周期信息增强的预测模型嵌入层;然后,通过Informer模型概率稀疏自注意力主动筛选光伏发电功率与特征变量间重要联系,采用卷积层和池化层对模型变量维度和网络参数进行自注意力蒸馏;最后通过解码层生成式机制进一步预测单序列和长序列发电功率。通过仿真验证,所提模型预测精度更高,能够对光伏发电功率进行长时间预测。

关键词: 光伏发电功率预测, 周期信息增强, 自注意力, 长序列预测

Abstract:

Aiming at the problem that the photovoltaic power generation power prediction method is difficult to capture hierarchical time series information, which results in the limited improvement of prediction accuracy. The paper proposes a photovoltaic power generation prediction method based on the fusion of hierarchical time series information and Informer model. First, photovoltaic power sequence scalar projection, local time stamp and global time stamp are extracted to establish a prediction model embedding layer of periodic information enhancement. Then, through the probability sparse self-attention of the Informer coding layer, the important connection between the photovoltaic power generation and the characteristic variables is actively screened. The convolutional layer and pooling layer are used to optimize the model variable dimensions and network parameters for self-attention distillation. Finally, one-step prediction of single-sequence and long-sequence power generation is realized through the generative mechanism of the decoding layer. Through simulation verification, the proposed model has higher prediction accuracy and can make long-term predictions of photovoltaic power generation.

Key words: photovoltaic power generation forecasting, cycle information enhancement, self-attention, long sequence time-series forecasting