中国电力 ›› 2024, Vol. 57 ›› Issue (6): 153-164, 234.DOI: 10.11930/j.issn.1004-9649.202309061

• 电网 • 上一篇    下一篇

时间累积架空输电线路覆冰预测模型与算法综述

王传琦(), 伍历文(), 邓志斌, 邓伟锋, 杨彬   

  1. 深圳市特发信息股份有限公司 国家认定企业技术中心,广东 深圳 518057
  • 收稿日期:2023-09-15 接受日期:2024-02-05 出版日期:2024-06-28 发布日期:2024-06-25
  • 作者简介:王传琦(1984—),男,通信作者,博士,高级工程师,从事输电线路在线监测系统、光纤传感技术研究,E-mail:wangcq@sdgi.com.cn
    伍历文(1967—),男,博士,高级工程师,从事在线监测系统应用、智能传感器研究,E-mail:wuliwen@sdgi.com.cn
  • 基金资助:
    深圳技术攻关重点资助项目(重2022N021高精度膜片式声压光学麦克风的研制及产业化,JSGG20220831103402004)。

Review of Icing Prediction Model and Algorithm for Overhead Transmission Lines Considering Time Cumulative Effects

Chuanqi WANG(), Liwen WU(), Zhibin DENG, Weifeng DENG, Bin YANG   

  1. National-certified Enterprise Technology Center, Shenzhen SDG Information Co., Ltd., Shenzhen 518057, China
  • Received:2023-09-15 Accepted:2024-02-05 Online:2024-06-28 Published:2024-06-25
  • Supported by:
    This work is supported by Shenzhen Key Technology Research Projects (Key 2022N021 Research of High-Precision Diaphragm Based Sound Pressure Sensitive Optical Microphone and Its Industrialization, No.JSGG20220831103402004)

摘要:

在覆冰条件的气象因素下,输电导线随时间累积形成的覆冰厚度、形状和分布变化,影响着电网系统的安全运行。按预测模型从覆冰生长到导线除冰各阶段存在的关联分析,讨论了各模型的优势差异以及相互存在组合的可能性。覆冰全周期存在着由微观到宏观的变化,影响着导线覆冰的生长进程。预测模型可按全周期组合,首先,对初始数据的降噪可解决数据发散,用主成分分析法的降维可提高预测精度。其次,模型中的支持向量机、混合的群智能优化算法、遗传算法组合等工具乃至交叉方式,都着力于覆冰过程的辨识与建模。再次,将热力融冰技术的负荷交流或涡流自热环应用在除冰阶段,使覆冰监测形成了动态闭环系统。最后,结合分析对输电线路覆冰预测的研究方向做了展望。

关键词: 时间累积, 气象因素, 架空输电线路, 覆冰, 预测模型, 算法

Abstract:

Under the meteorological factors of icing, the changes of icing thickness, shape and distribution on transmission conductor with time cumulation affect the safety operation of power grid system. Based on prediction models, this paper analyzes the association between various stages from icing growth to conductor deicing, and discusses the advantages of models and the possibility of mutual combination. The changes of icing from micro to macro in the whole icing circle affect the growth process of conductor icing. The prediction models can be combined based on the whole cycle. Firstly, the initial data is denoised to solve the data divergence, and the dimensionality reduction by the principal component analysis method can improve the prediction accuracy. Secondly, the combination and intercrossing mode of support vector machine, hybrid swarm intelligence optimization algorithm, genetic algorithm in the model focus on the identification and modeling of icing process. Thirdly, the application of thermal deicing techniques such as AC ice melting and eddy self-heating ring in the de-icing stage helps to form a dynamic closed-loop system for icing monitoring. Finally, an outlook is made on the research direction of icing prediction for transmission lines.

Key words: time cumulation, meteorological factor, overhead transmission line, icing, prediction model, algorithm