中国电力 ›› 2025, Vol. 58 ›› Issue (9): 54-67.DOI: 10.11930/j.issn.1004-9649.202411045
• 提升新能源和新型并网主体涉网安全能力关键技术 • 上一篇 下一篇
吉兴全1(
), 张祥星1(
), 张玉敏1(
), 叶平峰2, 王德龙1, 黄心月1
收稿日期:2024-11-13
发布日期:2025-09-26
出版日期:2025-09-28
作者简介:基金资助:
JI Xingquan1(
), ZHANG Xiangxing1(
), ZHANG Yumin1(
), YE Pingfeng2, WANG Delong1, HUANG Xinyue1
Received:2024-11-13
Online:2025-09-26
Published:2025-09-28
Supported by:摘要:
针对多分支配电网行波故障定位方法存在波头标定精度低和测距成本高的问题,提出一种基于直线检测算法(line segment detector,LSD)的多分支配电网故障定位方法。首先,明晰故障行波波头的陡斜直线特征,图像化处理长时窗下的故障行波数据,采用LSD算法实现图像中陡斜直线段的亚像素级检测,建立陡斜直线段的像素位置与行波波头位置之间的转换关系,实现故障行波波头的标定。其次,针对后续波头难以辨识的问题,提出一种基于单双端行波法相结合的多分支配电网故障定位方法,剖析配电网分支线路故障行波的传输特性,依据波头到达时间和极性构造行波筛选条件,判别含有效信息的区段行波,进而推断分支线路故障点的位置,并基于双端初始行波波头时差推断主干线路故障点的位置,进而在无须配置分支线路末端量测终端的前提下,实现多分支配电网的故障定位。最后,采用Matlab/Simulink仿真软件搭建多分支配电网仿真模型,对所提方法进行测试,仿真结果表明,所提方法能够有效标定波头并具有较高的故障定位精度。
吉兴全, 张祥星, 张玉敏, 叶平峰, 王德龙, 黄心月. 基于LSD算法的多分支配电网故障定位[J]. 中国电力, 2025, 58(9): 54-67.
JI Xingquan, ZHANG Xiangxing, ZHANG Yumin, YE Pingfeng, WANG Delong, HUANG Xinyue. Multi-branch Distribution Network Fault Location Based on LSD Algorithm[J]. Electric Power, 2025, 58(9): 54-67.
| 相序 | R/(Ω·km–1) | L/(H·km–1) | C/(F·km–1) | |||
| 正序 | 0.17 | 1.209×10–3 | 9.693×10–3 | |||
| 零序 | 0.23 | 5.475×10–3 | 5.997×10–3 |
表 1 配电线路参数
Table 1 Parameters of Distribution Lines
| 相序 | R/(Ω·km–1) | L/(H·km–1) | C/(F·km–1) | |||
| 正序 | 0.17 | 1.209×10–3 | 9.693×10–3 | |||
| 零序 | 0.23 | 5.475×10–3 | 5.997×10–3 |
| 检测 方法 | 故障距M 端距离/m | 故障 类型 | 过渡电 阻/Ω | 定位结 果/m | 绝对误 差/m | |||||
| db小波 变换 | 900 | Ag | 300 | 910.35 | 10.35 | |||||
| AB | 100 | 45.13 | ||||||||
| ABC | 200 | 36.94 | ||||||||
| ABg | 500 | 2.16 | ||||||||
| Ag | 18.01 | |||||||||
| 本文 | 900 | Ag | 300 | 905.15 | 5.15 | |||||
| AB | 100 | 2.50 | ||||||||
| ABC | 200 | 8.60 | ||||||||
| ABg | 500 | 2.35 | ||||||||
| Ag | 1.69 |
表 2 不同情况下2种检测方法的故障定位结果(初始行波波头)
Table 2 Fault localization results of the two detection methods in different cases (initial traveling wavefront)
| 检测 方法 | 故障距M 端距离/m | 故障 类型 | 过渡电 阻/Ω | 定位结 果/m | 绝对误 差/m | |||||
| db小波 变换 | 900 | Ag | 300 | 910.35 | 10.35 | |||||
| AB | 100 | 45.13 | ||||||||
| ABC | 200 | 36.94 | ||||||||
| ABg | 500 | 2.16 | ||||||||
| Ag | 18.01 | |||||||||
| 本文 | 900 | Ag | 300 | 905.15 | 5.15 | |||||
| AB | 100 | 2.50 | ||||||||
| ABC | 200 | 8.60 | ||||||||
| ABg | 500 | 2.35 | ||||||||
| Ag | 1.69 |
| 检测 方法 | 故障距M 端距离/m | 故障 类型 | 过渡电 阻/Ω | 定位结 果/m | 绝对误 差/m | |||||
| db小波 变换 | 900 | Ag | 300 | 817.93 | 82.07 | |||||
| AB | 100 | 11.13 | ||||||||
| ABC | 200 | 45.91 | ||||||||
| ABg | 500 | 36.17 | ||||||||
| Ag | 1.39 | |||||||||
| 本文 | 900 | Ag | 300 | 915.78 | 15.78 | |||||
| AB | 100 | 13.93 | ||||||||
| ABC | 200 | 16.73 | ||||||||
| ABg | 500 | 13.41 | ||||||||
| Ag | 25.02 |
表 3 不同情况下2种检测方法的故障定位结果(后续行波波头)
Table 3 Fault localization results of the two detection methods in different cases (subsequent traveling wavefront)
| 检测 方法 | 故障距M 端距离/m | 故障 类型 | 过渡电 阻/Ω | 定位结 果/m | 绝对误 差/m | |||||
| db小波 变换 | 900 | Ag | 300 | 817.93 | 82.07 | |||||
| AB | 100 | 11.13 | ||||||||
| ABC | 200 | 45.91 | ||||||||
| ABg | 500 | 36.17 | ||||||||
| Ag | 1.39 | |||||||||
| 本文 | 900 | Ag | 300 | 915.78 | 15.78 | |||||
| AB | 100 | 13.93 | ||||||||
| ABC | 200 | 16.73 | ||||||||
| ABg | 500 | 13.41 | ||||||||
| Ag | 25.02 |
| 故障距M端距离/m | 故障初相角/(°) | 定位距离/m | 绝对误差/m | |||
| 10 | 15.61 | |||||
| 30 | 10.70 | |||||
| 60 | 10.12 | |||||
| 90 | 9.98 |
表 4 不同故障初相角下的故障定位结果
Table 4 Fault localization results for different fault initial angles
| 故障距M端距离/m | 故障初相角/(°) | 定位距离/m | 绝对误差/m | |||
| 10 | 15.61 | |||||
| 30 | 10.70 | |||||
| 60 | 10.12 | |||||
| 90 | 9.98 |
| 故障 支路 | 故障距M 端距离/m | 故障 类型 | 过渡电 阻/Ω | 定位结 果/m | 绝对误 差/m | |||||
| T1P1 | Ag | 500 | 6.58 | |||||||
| T1P1 | AB | 300 | 1.88 | |||||||
| T1P1 | ABC | 10 | 4.19 | |||||||
| T2P2 | ABg | 500 | 1.33 | |||||||
| T2P2 | AB | 100 | 1.93 | |||||||
| T2P2 | ABC | 200 | 2.00 | |||||||
| T3P3 | Ag | 50 | 0.39 | |||||||
| T3P3 | AB | 200 | 3.26 | |||||||
| T3P3 | ABC | 300 | 3.63 | |||||||
| MT1 | Ag | 300 | 17.42 | |||||||
| T1T2 | AB | 100 | 1.97 | |||||||
| T2T3 | ABC | 200 | 3.52 | |||||||
| T3N | ABg | 50 | 8.83 |
表 5 不同情况下的多分支故障定位结果
Table 5 Results of multi-branch fault localization in different cases
| 故障 支路 | 故障距M 端距离/m | 故障 类型 | 过渡电 阻/Ω | 定位结 果/m | 绝对误 差/m | |||||
| T1P1 | Ag | 500 | 6.58 | |||||||
| T1P1 | AB | 300 | 1.88 | |||||||
| T1P1 | ABC | 10 | 4.19 | |||||||
| T2P2 | ABg | 500 | 1.33 | |||||||
| T2P2 | AB | 100 | 1.93 | |||||||
| T2P2 | ABC | 200 | 2.00 | |||||||
| T3P3 | Ag | 50 | 0.39 | |||||||
| T3P3 | AB | 200 | 3.26 | |||||||
| T3P3 | ABC | 300 | 3.63 | |||||||
| MT1 | Ag | 300 | 17.42 | |||||||
| T1T2 | AB | 100 | 1.97 | |||||||
| T2T3 | ABC | 200 | 3.52 | |||||||
| T3N | ABg | 50 | 8.83 |
| 方法 | 测点数量/台 | |
| 文献[ | 5 | |
| 本文 | 2 |
表 6 不同定位方法测点数量对比
Table 6 Comparison of measurement point quantity under different Fault Location Methods
| 方法 | 测点数量/台 | |
| 文献[ | 5 | |
| 本文 | 2 |
| 1 | 董新洲. 故障行波理论及其应用[M]. 北京: 科学出版社, 2022. |
| 2 | 胡满琳, 李楠, 李一鸣, 等. 基于负序分量的含光伏电源配电网故障区段定位方法[J]. 中国电力, 2024, 57 (5): 188- 199. |
| HU Manlin, LI Nan, LI Yiming, et al. Fault location method for distribution network with photovoltaic power based on negative sequence component[J]. Electric Power, 2024, 57 (5): 188- 199. | |
| 3 |
CHENG L, WANG T, WANG Y. A novel fault location method for distribution networks with distributed generations based on the time matrix of traveling-waves[J]. Protection and Control of Modern Power Systems, 2022, 7, 46.
DOI |
| 4 |
ZHANG Y M, SUN P K, JI X Q, et al. Low-carbon economic dispatch of integrated energy systems considering full-process carbon emission tracking and low carbon demand response[J]. IEEE Transactions on Network Science and Engineering, 2024, 11 (6): 5417- 5431.
DOI |
| 5 | 詹惠瑜, 刘科研, 盛万兴, 等. 有源配电网故障诊断与定位方法综述及展望[J]. 高电压技术, 2023, 49 (2): 660- 671. |
| ZHAN Huiyu, LIU Keyan, SHENG Wanxing, et al. Review and prospects of fault diagnosis and location method in active distribution network[J]. High Voltage Engineering, 2023, 49 (2): 660- 671. | |
| 6 |
WANG M Q, YANG M, FANG Z, et al. A practical feeder planning model for urban distribution system[J]. IEEE Transactions on Power Systems, 2023, 38 (2): 1297- 1308.
DOI |
| 7 | 王晓卫, 岳阳, 郭亮, 等. 注入电流分布特性辨识的配电网故障选线方法[J]. 中国电力, 2024, 57 (10): 78- 89. |
| WANG Xiaowei, YUE Yang, GUO Liang, et al. Injection current distribution characteristics identification based distribution-level fault line selection[J]. Electric Power, 2024, 57 (10): 78- 89. | |
| 8 |
LI Z M, XU Y, WANG P, et al. Restoration of a multi-energy distribution system with joint district network reconfiguration via distributed stochastic programming[J]. IEEE Transactions on Smart Grid, 2024, 15 (3): 2667- 2680.
DOI |
| 9 |
姚永峰, 王启哲, 王慧萍, 等. 基于邻接矩阵的低压配电网故障区段定位方法[J]. 中国电力, 2021, 54 (11): 91- 96, 114.
DOI |
|
YAO Yongfeng, WANG Qizhe, WANG Huiping, et al. Faulted line segment location method for low-voltage distribution network based on adjacency matrix[J]. Electric Power, 2021, 54 (11): 91- 96, 114.
DOI |
|
| 10 | 王成斌, 贠志皓, 张恒旭, 等. 基于微型PMU的配电网多分支架空线路参数无关故障定位算法[J]. 电网技术, 2019, 43 (9): 3202- 3211. |
| WANG Chengbin, YUN Zhihao, ZHANG Hengxu, et al. Parameter-free fault location algorithm for multi-terminal overhead transmission line of distribution network based on μMPMU[J]. Power System Technology, 2019, 43 (9): 3202- 3211. | |
| 11 | 彭华, 王文超, 朱永利, 等. 基于LSTM神经网络的风电场集电线路单相接地智能测距[J]. 电力系统保护与控制, 2021, 49 (16): 60- 66. |
| PENG Hua, WANG Wenchao, ZHU Yongli, et al. An intelligent single-phase grounding fault location for a wind farm collection line based on an LSTM neural network[J]. Power System Protection and Control, 2021, 49 (16): 60- 66. | |
| 12 | 吉兴全, 张朔, 张玉敏, 等. 基于IELM算法的配电网故障区段定位[J]. 电力系统自动化, 2021, 45 (22): 157- 166. |
| JI Xingquan, ZHANG Shuo, ZHANG Yumin, et al. Fault section location for distribution network based on improved electromagnetism-like mechanism algorithm[J]. Automation of Electric Power Systems, 2021, 45 (22): 157- 166. | |
| 13 |
SHI S X, ZHU B E, LEI A Y, et al. Fault location for radial distribution network via topology and reclosure-generating traveling waves[J]. IEEE Transactions on Smart Grid, 2019, 10 (6): 6404- 6413.
DOI |
| 14 |
LOPES F V, HONORATO T R, CUNHA G A, et al. Transmission line records synchronization based on traveling waves analysis[J]. IEEE Transactions on Power Delivery, 2021, 36 (3): 1892- 1902.
DOI |
| 15 | 尚博阳, 罗国敏, 茹嘉昕, 等. 基于有限量测信息的多分支配电线路故障定位方法[J]. 高电压技术, 2023, 49 (6): 2308- 2319. |
| SHANG Boyang, LUO Guomin, RU Jiaxin, et al. Fault location method of multi-branch distribution lines based on limited measurement information[J]. High Voltage Engineering, 2023, 49 (6): 2308- 2319. | |
| 16 |
MAJIDI M, ETEZADI-AMOLI M, SAMI FADALI M. A novel method for single and simultaneous fault location in distribution networks[J]. IEEE Transactions on Power Systems, 2015, 30 (6): 3368- 3376.
DOI |
| 17 | 亓臻康, 王浩宗, 董新洲, 等. 不依赖GNSS的输电线路双端行波故障测距[J]. 中国电机工程学报, 2024, 44 (10): 3766- 3777. |
| QI Zhenkang, WANG Haozong, DONG Xinzhou, et al. A GNSS-independent two-terminal traveling wave fault location scheme for transmission lines[J]. Proceedings of the CSEE, 2024, 44 (10): 3766- 3777. | |
| 18 | 张安安, 周志通, 庄景泰, 等. 基于行波瞬时振幅的高压直流输电线路故障测距方法研究[J]. 智慧电力, 2020, 48 (2): 78- 84. |
| ZHANG Anan, ZHOU Zhitong, ZHUANG Jingtai, et al. Fault location method of HVDC transmission line based on traveling wave instantaneous amplitude[J]. Smart Power, 2020, 48 (2): 78- 84. | |
| 19 | 刘沐辰, 安景革, 程定一, 等. 基于双端同步响应的高压输电线路故障定位方法[J]. 智慧电力, 2023, 51 (12): 15- 22. |
| LIU Muchen, AN Jingge, CHENG Dingyi, et al. Fault location method for HV transmission line based on twoterminal synchronous response[J]. Smart Power, 2023, 51 (12): 15- 22. | |
| 20 |
NAMDARI F, SALEHI M. High-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology[J]. IEEE Transactions on Power Delivery, 2017, 32 (1): 246- 253.
DOI |
| 21 | 董墨庭, 刘鸿鹏, 张书鑫. 基于改进经验小波变换与双端行波判据的低压直流电缆故障定位方法[J]. 东北电力大学学报, 2024, 44 (5): 94- 100. |
| DONG Moting, LIU Hongpeng, ZHANG Shuxin. Low-voltage DC cable fault location method based on improved empirical wavelet transform[J]. Journal of Northeast Electric Power University, 2024, 44 (5): 94- 100. | |
| 22 |
董新洲, 葛耀中, 徐丙垠. 利用暂态电流行波的输电线路故障测距研究[J]. 中国电机工程学报, 1999, 19 (4): 76- 80.
DOI |
|
DONG Xinzhou, GE Yaozhong, XU Bingyin. Research of fault location based on current travelling waves[J]. Proceedings of the CSEE, 1999, 19 (4): 76- 80.
DOI |
|
| 23 |
HAMIDI R J, LIVANI H. Traveling-wave-based fault-location algorithm for hybrid multiterminal circuits[J]. IEEE Transactions on Power Delivery, 2017, 32 (1): 135- 144.
DOI |
| 24 | 邓丰, 祖亚瑞, 黄懿菲, 等. 基于行波全波形主频分量的单端定位方法研究[J]. 中国电机工程学报, 2021, 41 (6): 2156- 2168. |
| DENG Feng, ZU Yarui, HUANG Yifei, et al. Research on single-ended fault location method based on the dominant frequency component of traveling wave full-waveform[J]. Proceedings of the CSEE, 2021, 41 (6): 2156- 2168. | |
| 25 | 张广斌, 束洪春, 于继来. 基于Hough变换直线检测的行波波头标定[J]. 中国电机工程学报, 2013, 33 (19): 165- 173, 6. |
| ZHANG Guangbin, SHU Hongchun, YU Jilai. Surge identification for travelling wave based on straight lines detection via Hough transform[J]. Proceedings of the CSEE, 2013, 33 (19): 165- 173, 6. | |
| 26 | 张广斌, 王开福, 束洪春, 等. 基于波形群灵敏角特征的输电线路故障单端行波辨识与测距[J]. 中国电机工程学报, 2024, 44 (10): 3789- 3804. |
| ZHANG Guangbin, WANG Kaifu, SHU Hongchun, et al. Single-ended traveling wave surge identification and fault location for transmission lines based on the sensitive angle characteristic of waveshape with multiple wavefronts[J]. Proceedings of the CSEE, 2024, 44 (10): 3789- 3804. | |
| 27 | 谢李为, 李勇, 罗隆福, 等. 基于极点对称分解的多分支线路故障定位方法[J]. 中国电机工程学报, 2021, 41 (21): 7326- 7339. |
| XIE Liwei, LI Yong, LUO Longfu, et al. Fault location method for multi-branch lines based on extreme-point symmetric mode decomposition[J]. Proceedings of the CSEE, 2021, 41 (21): 7326- 7339. | |
| 28 | 陈旭, 朱永利, 赵雪松, 等. 考虑线路长度变化的T型线路行波测距[J]. 电网技术, 2015, 39 (5): 1438- 1443. |
| CHEN Xu, ZHU Yongli, ZHAO Xuesong, et al. Traveling wave fault location for T-shaped transmission line considering change of line length[J]. Power System Technology, 2015, 39 (5): 1438- 1443. | |
| 29 | 范新桥, 朱永利. 基于双端行波原理的多端输电线路故障定位新方法[J]. 电网技术, 2013, 37 (1): 261- 269. |
| FAN Xinqiao, ZHU Yongli. A novel fault location scheme for multi-terminal transmission lines based on principle of double-ended traveling wave[J]. Power System Technology, 2013, 37 (1): 261- 269. | |
| 30 | 邓丰, 李欣然, 曾祥君, 等. 基于多端故障行波时差的含分布式电源配电网故障定位新方法[J]. 中国电机工程学报, 2018, 38 (15): 4399- 4409, 4640. |
| DENG Feng, LI Xinran, ZENG Xiangjun, et al. A novel multi-terminal fault location method based on traveling wave time difference for radial distribution systems with distributed generators[J]. Proceedings of the CSEE, 2018, 38 (15): 4399- 4409, 4640. | |
| 31 | 李练兵, 孙腾达, 曾四鸣, 等. 基于多端行波时差的配电网故障定位方法[J]. 电力系统保护与控制, 2022, 50 (3): 140- 147. |
| LI Lianbing, SUN Tengda, ZENG Siming, et al. Fault location method for distribution networks based on traveling wave time difference[J]. Power System Protection and Control, 2022, 50 (3): 140- 147. | |
| 32 | 谢李为, 李勇, 罗隆福, 等. 基于距离矩阵与分支系数的配电网故障定位方法[J]. 中国电机工程学报, 2020, 40 (7): 2180- 2191, 2397. |
| XIE Liwei, LI Yong, LUO Longfu, et al. Fault location method for distribution networks based on distance matrix and branch coefficient[J]. Proceedings of the CSEE, 2020, 40 (7): 2180- 2191, 2397. | |
| 33 |
GROMPONE VON GIOI R, JAKUBOWICZ J, MOREL J M, et al. LSD: a fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (4): 722- 732.
DOI |
| 34 |
DESOLNEUX A, MOISAN L, MOREL J M. Meaningful alignments[J]. International Journal of Computer Vision, 2000, 40 (1): 7- 23.
DOI |
| 35 | 束洪春. 行波暂态量分析与故障测距-下册[M]. 北京: 科学出版社, 2016: 28–30. |
| [1] | 陶军, 钟鸣, 张艺, 刘锋, 武玉珠, 夏振兴. 基于网络流算法和深度神经网络的智能变电站二次系统故障定位方法[J]. 中国电力, 2025, 58(9): 68-78. |
| [2] | 赵欣洋, 邹洪森, 杨晨, 李玉琦, 李博通, 刘思源. 基于模量反向行波的接地极线路故障类型识别与定位方法[J]. 中国电力, 2025, 58(2): 33-42. |
| [3] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 智能变电站多信息融合建模的通信链路故障定位方法[J]. 中国电力, 2023, 56(8): 207-215. |
| [4] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 基于深度学习的智能变电站通信链路故障定位方法[J]. 中国电力, 2023, 56(7): 136-145. |
| [5] | 李铁成, 张卫明, 臧谦, 王献志, 任江波, 周坤. 基于混合整数线性规划的配电网在线自愈方案[J]. 中国电力, 2023, 56(5): 129-136. |
| [6] | 曹赋禄, 赵晋斌, 潘超, 毛玲, 屈克庆. 基于DFFT的低压直流线路主动式接地故障定位方法[J]. 中国电力, 2023, 56(4): 184-191. |
| [7] | 钟鸣, 陶军, 刘洵宇, 杨逸, 杨炳元. 智能变电站光纤虚实回路映射及故障诊断技术[J]. 中国电力, 2023, 56(10): 171-178. |
| [8] | 杨喜行, 黄纯, 申亚涛, 胡念恩, 万子恒. 基于损失功率匹配的配电线路故障定位方法[J]. 中国电力, 2022, 55(8): 113-120. |
| [9] | 王巍璋, 王淳, 尹发根. 基于可达矩阵和贝叶斯定理的含分布式电源的配电网故障区段定位[J]. 中国电力, 2021, 54(7): 93-99,124. |
| [10] | 李福志, 郑卫宾, 张文海, 张智勇, 林德锋, 张旭波, 张荣建. 基于回路直流电阻测量的输电线路单相接地故障离线故障定位[J]. 中国电力, 2021, 54(2): 140-146. |
| [11] | 徐艳春, 赵彩彩, 孙思涵, MI Lu. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54(11): 133-143. |
| [12] | 赵思腾, 桂林, 张琦雪, 王祥珩. 大型发电机及其机端外接元件单相接地故障定位[J]. 中国电力, 2020, 53(3): 119-125. |
| [13] | 柴鹏, 周灏, 张煜, 赵文杰, 杨潇, 周苗, 李明贞. 基于双端行波法的电缆线路短路故障定位改进[J]. 中国电力, 2020, 53(11): 168-174. |
| [14] | 李振兴, 吴李群, 谭洪, 程宜兴, 李振华. 基于简单通信的双端行波测距新方法[J]. 中国电力, 2018, 51(3): 74-79. |
| [15] | 张磐, 张愉, 丁一, 李武兴, 姜惠兰, 陈娟. 基于微扰法的低压有源配电网故障定位方法[J]. 中国电力, 2018, 51(12): 63-71. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编