中国电力 ›› 2025, Vol. 58 ›› Issue (2): 33-42.DOI: 10.11930/j.issn.1004-9649.202403069
赵欣洋1(), 邹洪森1, 杨晨1, 李玉琦2(
), 李博通2, 刘思源2
收稿日期:
2024-03-19
出版日期:
2025-02-28
发布日期:
2025-02-25
作者简介:
赵欣洋(1985—),男,高级工程师,从事直流输电运检技术,E-mail:41181853@qq.com基金资助:
Xinyang ZHAO1(), Hongsen ZOU1, Chen YANG1, Yuqi LI2(
), Botong LI2, Siyuan LIU2
Received:
2024-03-19
Online:
2025-02-28
Published:
2025-02-25
Supported by:
摘要:
行波法是目前接地极线路故障测距的常用方法,但在阈值整定方面普遍依赖于仿真,且无法判断接地极线路故障类型。针对上述问题,采用主动式行波注入法,通过解析计算的方式,得到接地极线路发生单回接地故障、双回跨线故障、单回断线故障和双回断线故障后接地极线路首端测量点处的模量反向行波时域表达式,提出了基于模量反向行波的接地极线路故障类型识别和定位方法。所提出的注入行波法具有明确的测距阈值整定表达式,可以准确判断出线路故障类型。在PSCAD/EMTDC环境中检验所提方法的可靠性和鲁棒性,仿真结果表明:所提方法在实现故障精准测距外,可以可靠识别出接地极故障类型,且具有较强的耐受过渡电阻以及抗噪声干扰能力。
赵欣洋, 邹洪森, 杨晨, 李玉琦, 李博通, 刘思源. 基于模量反向行波的接地极线路故障类型识别与定位方法[J]. 中国电力, 2025, 58(2): 33-42.
Xinyang ZHAO, Hongsen ZOU, Chen YANG, Yuqi LI, Botong LI, Siyuan LIU. Fault Type Recognition and Localization Method for Grounding Electrode Line Based on Modulus Backward Traveling Wave[J]. Electric Power, 2025, 58(2): 33-42.
故障距离/km | t1/s | 测量距离/km | 误差/% | |||
10 | 10.02 | 0.2 | ||||
30 | 30.10 | 0.3 | ||||
50 | 50.25 | 0.5 | ||||
70 | 70.50 | 0.7 | ||||
90 | 90.80 | 0.9 |
表 1 测距效果检验
Table 1 Testing of distance measurement effect
故障距离/km | t1/s | 测量距离/km | 误差/% | |||
10 | 10.02 | 0.2 | ||||
30 | 30.10 | 0.3 | ||||
50 | 50.25 | 0.5 | ||||
70 | 70.50 | 0.7 | ||||
90 | 90.80 | 0.9 |
故障类型 | 故障距离/km | Bm1幅值/kV | Bm0幅值/kV | 判断结果 | ||||
单回接地故障 | 10 | 2.7 | –0.12 | 单回接地故障 | ||||
90 | 0.28 | 0.11 | 单回接地故障 | |||||
双回跨线故障 | 10 | 5×10–5 | 双回跨线故障 | |||||
90 | 1×10–6 | 双回跨线故障 | ||||||
单回断线故障 | 10 | 0.39 | 0.32 | 单回断线故障 | ||||
90 | 0.61 | 0.33 | 单回断线故障 | |||||
双回断线故障 | 10 | 7×10–5 | 0.79 | 双回断线故障 | ||||
90 | 2×10–6 | 0.82 | 双回断线故障 |
表 2 故障类型识别效果检验
Table 2 Verification of fault type identification effect
故障类型 | 故障距离/km | Bm1幅值/kV | Bm0幅值/kV | 判断结果 | ||||
单回接地故障 | 10 | 2.7 | –0.12 | 单回接地故障 | ||||
90 | 0.28 | 0.11 | 单回接地故障 | |||||
双回跨线故障 | 10 | 5×10–5 | 双回跨线故障 | |||||
90 | 1×10–6 | 双回跨线故障 | ||||||
单回断线故障 | 10 | 0.39 | 0.32 | 单回断线故障 | ||||
90 | 0.61 | 0.33 | 单回断线故障 | |||||
双回断线故障 | 10 | 7×10–5 | 0.79 | 双回断线故障 | ||||
90 | 2×10–6 | 0.82 | 双回断线故障 |
故障距离/km | t1/s | 测量距离/km | 误差/% | |||
10 | 10.03 | 0.3 | ||||
30 | 30.12 | 0.4 | ||||
50 | 50.30 | 0.6 | ||||
70 | 70.57 | 0.8 | ||||
90 | 90.80 | 0.9 |
表 3 高阻故障下测距效果检验
Table 3 Testing of distance measurement effect under high resistance fault
故障距离/km | t1/s | 测量距离/km | 误差/% | |||
10 | 10.03 | 0.3 | ||||
30 | 30.12 | 0.4 | ||||
50 | 50.30 | 0.6 | ||||
70 | 70.57 | 0.8 | ||||
90 | 90.80 | 0.9 |
故障距离/km | t1/s | 测量距离/km | 误差/% | |||
10 | 10.05 | 0.5 | ||||
30 | 30.24 | 0.8 | ||||
50 | 50.60 | 1.2 | ||||
70 | 71.40 | 2.0 | ||||
90 | 91.72 | 1.8 |
表 4 20 dB高斯白噪声干扰条件下故障测距效果检验
Table 4 Test of fault distance measurement effect under 20 db gaussian white noise interference
故障距离/km | t1/s | 测量距离/km | 误差/% | |||
10 | 10.05 | 0.5 | ||||
30 | 30.24 | 0.8 | ||||
50 | 50.60 | 1.2 | ||||
70 | 71.40 | 2.0 | ||||
90 | 91.72 | 1.8 |
故障类型 | 故障距离/km | Bm1幅值/kV | Bm0幅值/kV | 判断结果 | ||||
单回接地故障 | 10 | 2.8 | 0.14 | 单回接地故障 | ||||
90 | 0.35 | 0.12 | 单回接地故障 | |||||
双回跨线故障 | 10 | 6×10–5 | 双回跨线故障 | |||||
90 | 2×10–5 | 双回跨线故障 | ||||||
单回断线故障 | 10 | 0.43 | 0.37 | 单回断线故障 | ||||
90 | 0.55 | 0.39 | 单回断线故障 | |||||
双回断线故障 | 10 | 9×10–5 | 0.81 | 双回断线故障 | ||||
90 | 4×10–5 | 0.85 | 双回断线故障 |
表 5 20 dB高斯白噪声干扰条件下故障类型识别效果检验
Table 5 Verification of fault type identification effect under 20 db gaussian white noise interference
故障类型 | 故障距离/km | Bm1幅值/kV | Bm0幅值/kV | 判断结果 | ||||
单回接地故障 | 10 | 2.8 | 0.14 | 单回接地故障 | ||||
90 | 0.35 | 0.12 | 单回接地故障 | |||||
双回跨线故障 | 10 | 6×10–5 | 双回跨线故障 | |||||
90 | 2×10–5 | 双回跨线故障 | ||||||
单回断线故障 | 10 | 0.43 | 0.37 | 单回断线故障 | ||||
90 | 0.55 | 0.39 | 单回断线故障 | |||||
双回断线故障 | 10 | 9×10–5 | 0.81 | 双回断线故障 | ||||
90 | 4×10–5 | 0.85 | 双回断线故障 |
1 | 李强, 陈潜, 武霁阳, 等. 基于集成学习的高压直流输电系统故障诊断[J]. 电力系统保护与控制, 2023, 51 (16): 168- 178. |
LI Qiang, CHEN Qian, WU Jiyang, et al. Ensemble learning-based HVDC systems fault diagnosis[J]. Power System Protection and Control, 2023, 51 (16): 168- 178. | |
2 |
ZHANG B, CAO F Y, ZENG R, et al. DC current distribution in both AC power grids and pipelines near HVDC grounding electrode considering their interaction[J]. IEEE Transactions on Power Delivery, 2019, 34 (6): 2240- 2247.
DOI |
3 | 朱清代, 张纯, 石玉东, 等. 直流输电单极故障引发接地极线路击穿的定位方法研究[J]. 电力系统保护与控制, 2018, 46 (12): 64- 70. |
ZHU Qingdai, ZHANG Chun, SHI Yudong, et al. Research on location method of grounding electrode line fault caused by unipolar fault of HVDC transmission system[J]. Power System Protection and Control, 2018, 46 (12): 64- 70. | |
4 | 全江涛, 谢志成, 陈科基, 等. 特/超高压直流输电系统单极运行下变压器中性点直流电流分布规律仿真分析[J]. 高电压技术, 2015, 41 (3): 787- 793. |
QUAN Jiangtao, XIE Zhicheng, CHEN Keji, et al. Mechanism analysis and simulation of DC current distribution along transformer neutral point under the condition of UHVDC/HVDC single-pole operation[J]. High Voltage Engineering, 2015, 41 (3): 787- 793. | |
5 | 庄祎, 李小鹏, 滕予非, 等. 一种高压直流输电系统接地极线路保护新方法[J]. 电力自动化设备, 2019, 39 (9): 74- 79. |
ZHUANG Yi, LI Xiaopeng, TENG Yufei, et al. Novel method for HVDC power transmission system grounding electrode line protection[J]. Electric Power Automation Equipment, 2019, 39 (9): 74- 79. | |
6 | 刘连光, 马成廉. 一种考虑接地极选址及受端电网结构的偏磁电流减小方法[J]. 中国电力, 2021, 54 (7): 100- 108. |
LIU Lianguang, MA Chenglian. A DC bias current reducing method considering grounding electrode location and receiving-end grid structure[J]. Electric Power, 2021, 54 (7): 100- 108. | |
7 | 滕予非, 王鱼, 焦在滨, 等. 特高压直流输电系统接地极引线阻抗监视策略[J]. 电工技术学报, 2016, 31 (11): 157- 164. |
TENG Yufei, WANG Yu, JIAO Zaibin, et al. Impedance monitoring scheme for ground electrode line of ultra high voltage DC transmission system[J]. Transactions of China Electrotechnical Society, 2016, 31 (11): 157- 164. | |
8 | 陈东, 乐波, 梅念, 等. ±320kV厦门双极柔性直流输电工程系统设计[J]. 电力系统自动化, 2018, 42 (14): 180- 185. |
CHEN Dong, YUE Bo, MEI Nian, et al. System design of Xiamen bipolar VSC-HCDC transmission project[J]. Automation of Electric Power Systems, 2018, 42 (14): 180- 185. | |
9 | 王永平, 赵文强, 杨建明, 等. 混合直流输电技术及发展分析[J]. 电力系统自动化, 2017, 41 (7): 156- 167. |
WANG Yongping, ZHAO Wenqiang, YANG Jianming, et al. Hybrid high-voltage direct current transmission technology and its development analysis[J]. Automation of Electric Power Systems, 2017, 41 (7): 156- 167. | |
10 | 刘孝辉, 唐有证, 张庆武, 等. 特高压直流输电系统接地极引线双端不平衡保护[J]. 电力系统自动化, 2017, 41 (15): 150- 154, 191. |
LIU Xiaohui, TANG Youzheng, ZHANG Qingwu, et al. Double end unbalance protection of electrode line in ultra high voltage direct current transmission system[J]. Automation of Electric Power Systems, 2017, 41 (15): 150- 154, 191. | |
11 | 曾祥君, 张玺, 阳韬, 等. 高压直流输电系统接地极不平衡保护改进措施研究[J]. 电力系统保护与控制, 2014, 42 (24): 132- 137. |
ZENG Xiangjun, ZHANG Xi, YANG Tao, et al. Improvement measures of electrodes line unbalance protection for HVDC system[J]. Power System Protection and Control, 2014, 42 (24): 132- 137. | |
12 | 杨林, 王宾, 董新洲. 高压直流输电线路故障测距研究综述[J]. 电力系统自动化, 2018, 42 (8): 185- 191. |
YANG Lin, WANG Bin, DONG Xinzhou. Overview of fault location methods in high voltage direct current transmission lines[J]. Automation of Electric Power Systems, 2018, 42 (8): 185- 191. | |
13 | 李小鹏, 庄祎, 卢继平, 等. UHVDC接地极线路短路阻抗特性及阻抗监视系统死区研究[J]. 电力系统自动化, 2020, 44 (22): 70- 77. |
LI Xiaopeng, ZHUANG Yi, LU Jiping, et al. Research on short-circuit impedance characteristic and dead-zone of supervision system for UHVDC grounding electrode line[J]. Automation of Electric Power Systems, 2020, 44 (22): 70- 77. | |
14 | 李斌, 张鑫华, 何佳伟, 等. 基于高频测量阻抗幅相特性的接地极双回跨线故障测距方法[J]. 电网技术, 2022, 46 (12): 4645- 4655. |
LI Bin, ZHANG Xinhua, HE Jiawei, et al. Grounding electrode double-line fault location based on characters of amplitude and phase angle of high-frequency measured impedance[J]. Power System Technology, 2022, 46 (12): 4645- 4655. | |
15 | 李斌, 孙强, 何佳伟, 等. 基于谐波注入的柔性直流系统接地极线路故障测距方法[J]. 电网技术, 2020, 44 (12): 4773- 4782. |
LI Bin, SUN Qiang, HE Jiawei, et al. Fault location for grounding electrode line of MMC DC system based on harmonic injection[J]. Power System Technology, 2020, 44 (12): 4773- 4782. | |
16 |
LIN S, LIU L, SUN P Y, et al. Fault location algorithm based on characteristic- harmonic measured impedance for HVdc grounding electrode lines[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (12): 9578- 9585.
DOI |
17 | 张怿宁, 郝洪民, 李京, 等. 脉冲注入法和单端故障行波法相结合的直流输电系统接地极线路故障测距[J]. 电力系统保护与控制, 2017, 45 (20): 117- 122. |
ZHANG Yining, HAO Hongmin, LI Jing, et al. Fault location of HVDC grounding electrode lines based on combination of pulse injection method and single-ended fault travelling wave method[J]. Power System Protection and Control, 2017, 45 (20): 117- 122. | |
18 | 张怿宁, 王彩芝, 李京, 等. 基于数学形态学的直流接地极线路单端行波故障测距[J]. 电力系统及其自动化学报, 2016, 28 (1): 74- 78. |
ZHANG Yining, WANG Caizhi, LI Jing, et al. Single-ended travelling wave fault location for HVDC grounding electrode lines based on mathematical morphology[J]. Proceedings of the CSU-EPSA, 2016, 28 (1): 74- 78. | |
19 | 张怿宁, 束洪春, 田鑫萃, 等. 特高压直流输电线路接地极线路高阻故障测距方法研究[J]. 电力系统保护与控制, 2015, 43 (24): 1- 7. |
ZHANG Yining, SHU Hongchun, TIAN Xincui, et al. Research on fault location algorithm for HVDC electrode line high impedance fault[J]. Power System Protection and Control, 2015, 43 (24): 1- 7. | |
20 | LI B, SUN Q, HE J W, et al. An improved protection scheme of the ground electrode line based on two frequency components injection[J]. International Journal of Electrical Power & Energy Systems, 2021, 129, 106901. |
21 | 徐敏, 蔡泽祥, 李晓华, 等. 考虑频变参数和直流控制的直流输电系统线路故障解析[J]. 电力系统自动化, 2015, 39 (11): 37- 44. |
XU Min, CAI Zexiang, LI Xiaohua, et al. Analysis of line faults on HVDC transmission system considering frequency-dependent parameters and HVDC control[J]. Automation of Electric Power Systems, 2015, 39 (11): 37- 44. | |
22 | 杨光, 朱韬析, 魏丽君, 等. 直流输电系统接地极线路故障研究[J]. 电力系统保护与控制, 2009, 37 (21): 45- 49. |
YANG Guang, ZHU Taoxi, WEI Lijun, et al. Research on the faults of electrode line of HVDC transmission system in monopolar ground return operation[J]. Power System Protection and Control, 2009, 37 (21): 45- 49. |
[1] | 雷霄, 许锐文, 郑宁敏, 李德才, 刘世成. 闽粤联网直流工程与SVG/HAPF协同运行特性及现场试验[J]. 中国电力, 2024, 57(4): 130-138. |
[2] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 智能变电站多信息融合建模的通信链路故障定位方法[J]. 中国电力, 2023, 56(8): 207-215. |
[3] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 基于深度学习的智能变电站通信链路故障定位方法[J]. 中国电力, 2023, 56(7): 136-145. |
[4] | 李铁成, 张卫明, 臧谦, 王献志, 任江波, 周坤. 基于混合整数线性规划的配电网在线自愈方案[J]. 中国电力, 2023, 56(5): 129-136. |
[5] | 梁伟, 吴林林, 赖启平, 李东晟, 徐曼, 沈沉. 风电直流送出系统送端交流故障下风机过电压研究[J]. 中国电力, 2023, 56(4): 28-37. |
[6] | 曹赋禄, 赵晋斌, 潘超, 毛玲, 屈克庆. 基于DFFT的低压直流线路主动式接地故障定位方法[J]. 中国电力, 2023, 56(4): 184-191. |
[7] | 钟鸣, 陶军, 刘洵宇, 杨逸, 杨炳元. 智能变电站光纤虚实回路映射及故障诊断技术[J]. 中国电力, 2023, 56(10): 171-178. |
[8] | 杨喜行, 黄纯, 申亚涛, 胡念恩, 万子恒. 基于损失功率匹配的配电线路故障定位方法[J]. 中国电力, 2022, 55(8): 113-120. |
[9] | 雷兴列, 程登峰, 操松元, 彭勇, 夏令志. ±1100 kV接地极线路带电作业绝缘工具最小有效绝缘长度[J]. 中国电力, 2022, 55(4): 117-122. |
[10] | 刘涛, 吴国旸, 戴汉扬, 苏志达, 宋新立, 肖雄, 郝捷. 直流输电控制系统机电暂态模型参数校核误差评价方法[J]. 中国电力, 2022, 55(4): 123-131. |
[11] | 郭小龙, 张江飞, 亢朋朋, 杨桂兴, 孙谊媊, 袁铁江, 刘勇. 含基于PI控制受端二次调频的特高压直流虚拟同步控制策略[J]. 中国电力, 2022, 55(11): 66-72. |
[12] | 王巍璋, 王淳, 尹发根. 基于可达矩阵和贝叶斯定理的含分布式电源的配电网故障区段定位[J]. 中国电力, 2021, 54(7): 93-99,124. |
[13] | 游广增, 李华瑞, 李常刚, 刘超, 钱迎春, 李玲芳. 计及风电高频保护的送端电网多直流协同频率控制[J]. 中国电力, 2021, 54(5): 83-90,110. |
[14] | 李福志, 郑卫宾, 张文海, 张智勇, 林德锋, 张旭波, 张荣建. 基于回路直流电阻测量的输电线路单相接地故障离线故障定位[J]. 中国电力, 2021, 54(2): 140-146. |
[15] | 徐艳春, 赵彩彩, 孙思涵, MI Lu. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54(11): 133-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||