[1] 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3): 1–11 ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China’s power system[J]. Electric Power, 2021, 54(3): 1–11 [2] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999–5008 ZHOU Xiaoxin, LU Zongxiang, LIU Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999–5008 [3] 孙大卫, 吴林林, 刘辉, 等. 弱电网直驱风机低电压穿越特性及其对机端暂态电压的影响[J]. 中国电机工程学报, 2021, 41(14): 4777–4786 SUN Dawei, WU Linlin, LIU Hui, et al. Effect of the low voltage ride through characteristics on PMSG terminal transient voltage in weakly-synchronized gird[J]. Proceedings of the CSEE, 2021, 41(14): 4777–4786 [4] LI X N, LIU Y, LI T, et al. Study on the impact of commutation failure on AC voltage of rectifier-side in UHVDC[C]//2014 International Conference on Power System Technology. Chengdu, China. IEEE, 2014: 2154–2161. [5] 刘其辉, 董楚然, 吴勇, 等. 直流换相失败下双馈风电机组特性描述及暂态过电压抑制[J]. 电力系统自动化, 2022, 46(8): 29–38 LIU Qihui, DONG Churan, WU Yong, et al. Characteristic description and transient overvoltage suppression of doubly-fed wind turbines with LCC-HVDC commutation failure[J]. Automation of Electric Power Systems, 2022, 46(8): 29–38 [6] 刘辉, 王阔. 新能源低电压穿越无功电流对暂态电压安全约束的影响[J]. 中国电力, 2022, 55(2): 152–158 LIU Hui, WANG Kuo. LVRT reactive current index of renewable units based on the constraints of transient voltage[J]. Electric Power, 2022, 55(2): 152–158 [7] 王熙纯, 刘纯, 林伟芳, 等. 风机故障穿越特性对大规模风电直流外送系统暂态过电压的影响及参数优化[J]. 电网技术, 2021, 45(12): 4612–4621 WANG Xichun, LIU Chun, LIN Weifang, et al. Influence of wind turbine fault ride-through characteristics on transient overvoltage of large-scale wind power DC transmission systems and parameter optimization[J]. Power System Technology, 2021, 45(12): 4612–4621 [8] 范世源, 杨贺雅, 向鑫, 等. 具有直流故障穿越能力的模块化多电平换流拓扑推演与对比[J]. 中国电力, 2021, 54(10): 38–45 FAN Shiyuan, YANG Heya, XIANG Xin, et al. Derivation and comparison of modular multilevel converter topologies with DC fault ride-through capability[J]. Electric Power, 2021, 54(10): 38–45 [9] 屠竞哲, 张健, 刘明松, 等. 考虑风机动态特性的大扰动暂态过电压机理分析[J]. 电力系统自动化, 2020, 44(11): 197–205 TU Jingzhe, ZHANG Jian, LIU Mingsong, et al. Mechanism analysis of transient overvoltage with large disturbance considering dynamic characteristics of wind generator[J]. Automation of Electric Power Systems, 2020, 44(11): 197–205 [10] 何国庆, 王伟胜, 刘纯, 等. 风电基地经特高压直流送出系统换相失败故障(一): 送端风电机组暂态无功电压建模[J]. 中国电机工程学报, 2022, 42(12): 4391–4405 HE Guoqing, WANG Weisheng, LIU Chun, et al. Commutation failure of UHVDC system for wind farm integration(part Ⅰ): transient reactive power and voltage modeling of wind Powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(12): 4391–4405 [11] 金一丁, 贺静波, 李光辉, 等. 风电基地经特高压直流送出系统换相失败故障(二): 送端风电机组暂态无功电压特性与作用机理分析[J]. 中国电机工程学报, 2022, 42(13): 4738–4749 JIN Yiding, HE Jingbo, LI Guanghui, et al. Commutation failure of UHVDC system for wind farm integration(part Ⅱ): characteristics and mechanism analysis of transient reactive power and voltage of wind Powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(13): 4738–4749 [12] XIAO H, LI Y H, LAN T K. Sending end AC faults can cause commutation failure in LCC-HVDC inverters[J]. IEEE Transactions on Power Delivery, 2020, 35(5): 2554–2557. [13] HONG L R, ZHOU X P, XIA H T, et al. Mechanism and prevention of commutation failure in LCC-HVDC caused by sending end AC faults[J]. IEEE Transactions on Power Delivery, 2021, 36(1): 473–476. [14] LIN S, LEI Y Q, LIU J, et al. Analysis and prevention of commutation failure caused by HVDC rectifier AC faults[J]. IET Generation, Transmission & Distribution, 2022, 16(7): 1416–1424. [15] 林圣, 雷雨晴, 刘健, 等. HVDC送端系统故障引发受端换相失败分析[J]. 中国电机工程学报, 2022, 42(5): 1669–1680 LIN Sheng, LEI Yuqing, LIU Jian, et al. Analysis of receiving-side commutation failure mechanism caused by HVDC sending-side system fault[J]. Proceedings of the CSEE, 2022, 42(5): 1669–1680 [16] 彭忠, 孙攀磊, 韩伟, 等. LCC与VSC级联的特高压混合直流输电系统控制策略[J]. 电力系统保护与控制, 2021, 49(19): 162–172 PENG Zhong, SUN Panlei, HAN Wei, et al. Control strategy of a hybrid UHVDC transmission system cascaded by LCC and VSC[J]. Power System Protection and Control, 2021, 49(19): 162–172 [17] LIANG W, SHEN C, SUN H D, et al. Overvoltage mechanism and suppression method for LCC-HVDC rectifier station caused by sending end AC faults[J]. IEEE Transactions on Power Delivery, 2022, PP(99): 1–4. [18] TU J Z, PAN Y, LU X D, et al. Mechanism analysis of transient overvoltage after large disturbance considering dynamic characteristic of wind turbine generators[C]//2021 IEEE 4 th International Electrical and Energy Conference (CIEEC). Wuhan, China. IEEE, 2021: 1–6. [19] ZHANG T, YAO J, PEI J, et al. Coordinated control of HVDC sending system with large-scale DFIG-based wind farm under mono-polar blocking fault[J]. International Journal of Electrical Power & Energy Systems, 2020, 119: 105943. [20] ZHANG Q F, HE J H, XU Y, et al. Average-value modeling of direct-driven PMSG-based wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 264–273. [21] QI J L, CHAO P P, JIN X M, et al. Dynamic equivalent modeling of direct-drive PMSG wind farms based on the transient active power response characteristics[C]//2016 IEEE 8 th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Hefei. IEEE, 2016: 2925–2930. [22] HONG L R, ZHOU X P, LIU Y F, et al. Analysis and improvement of the multiple controller interaction in LCC-HVDC for mitigating repetitive commutation failure[J]. IEEE Transactions on Power Delivery, 2021, 36(4): 1982–1991. [23] (美)Carson W. Taylor. 电力系统电压稳定[M]. 王伟胜, 译. 北京: 中国电力出版社, 2002. |