中国电力 ›› 2024, Vol. 57 ›› Issue (4): 171-181.DOI: 10.11930/j.issn.1004-9649.202311116
彭茂兰1(), 冯雷1(
), 王宇2(
), 徐李清2(
), 赵薇2(
), 郭春义2(
)
收稿日期:
2023-11-22
接受日期:
2024-01-21
出版日期:
2024-04-28
发布日期:
2024-04-26
作者简介:
彭茂兰(1991—),女,硕士,工程师,从事柔性直流输电工程设计与试验技术研究,E-mail:pml1081170912@163.com基金资助:
Maolan PENG1(), Lei FENG1(
), Yu WANG2(
), Liqing XU2(
), Wei ZHAO2(
), Chunyi GUO2(
)
Received:
2023-11-22
Accepted:
2024-01-21
Online:
2024-04-28
Published:
2024-04-26
Supported by:
摘要:
基于模块化多电平换流器(modular multilevel converter,MMC)的多端柔性直流输电系统能够实现多电源供电和多落点受电,运行方式灵活,是解决清洁能源并网和消纳问题的有效技术手段。然而当系统受端交流侧发生故障时将出现盈余功率,导致直流过电压问题。对此,提出一种基于桥臂调制波动态调整的多端柔直系统直流过电压抑制策略。所提策略通过在换流阀桥臂调制波中引入直流电压偏差控制,动态调整暂态期间桥臂调制波的直流电压参考值,从而减少桥臂投入的子模块数量,最终达到抑制直流过电压的目的。为验证所提控制策略的有效性,在PSCAD/EMTDC中搭建了送端光水打捆经四端柔性直流输电的外送系统,给出了所提控制策略的参数设计方法。通过设置受端交流系统不同工况,对比研究了所提控制策略投入后的系统直流过电压特性,结果表明所提控制策略可以有效抑制因受端交流侧故障引起的多端柔性直流输电系统的直流过电压。
彭茂兰, 冯雷, 王宇, 徐李清, 赵薇, 郭春义. 基于桥臂调制波调整的多端柔直系统直流过电压抑制策略[J]. 中国电力, 2024, 57(4): 171-181.
Maolan PENG, Lei FENG, Yu WANG, Liqing XU, Wei ZHAO, Chunyi GUO. DC Overvoltage Suppression Strategy for MMC-MTDC Based on Bridge Arm Modulated Wave Adjustment[J]. Electric Power, 2024, 57(4): 171-181.
系统参数 | 数值 | |
额定直流电压/kV | ±800 | |
4个换流站额定直流功率/MW | 10000 | |
光伏场站额定有功功率/MW | 7500 | |
水电站额定有功功率/MW | 2500 | |
直流线路I长度/km | 2000 | |
直流线路Ⅱ长度/km | 400 | |
直流线路电阻R0/(Ω·km–1) | 0.0042 | |
直流线路电感L0/(H·km–1) | 0.0008 | |
直流线路电容C0/(μF·km–1) | 0.0065 | |
受端交流系统短路比 | 5 | |
单个换流阀额定直流电压/kV | 400 | |
单个换流阀额定直流功率/kW | 1250 | |
单个换流阀的桥臂子模块个数 | 220 | |
子模块额定电容电压/kV | 2.1 |
表 1 系统参数
Table 1 System Parameters
系统参数 | 数值 | |
额定直流电压/kV | ±800 | |
4个换流站额定直流功率/MW | 10000 | |
光伏场站额定有功功率/MW | 7500 | |
水电站额定有功功率/MW | 2500 | |
直流线路I长度/km | 2000 | |
直流线路Ⅱ长度/km | 400 | |
直流线路电阻R0/(Ω·km–1) | 0.0042 | |
直流线路电感L0/(H·km–1) | 0.0008 | |
直流线路电容C0/(μF·km–1) | 0.0065 | |
受端交流系统短路比 | 5 | |
单个换流阀额定直流电压/kV | 400 | |
单个换流阀额定直流功率/kW | 1250 | |
单个换流阀的桥臂子模块个数 | 220 | |
子模块额定电容电压/kV | 2.1 |
换流站 | 直流过电压 理论计算值/kV | 直流过电压 仿真值/kV | 相对误差/% | |||
整流站 | 894 | 892 | 0.2 | |||
逆变站1 | 845 | 838 | 0.8 | |||
逆变站2 | 824 | 844 | 2.4 |
表 2 逆变站1交流故障下各换流站直流过电压理论计算值与仿真值对比
Table 2 Comparison between theoretical calculation and simulation values of DC overvoltage of all converters under AC fault of inverter station 1
换流站 | 直流过电压 理论计算值/kV | 直流过电压 仿真值/kV | 相对误差/% | |||
整流站 | 894 | 892 | 0.2 | |||
逆变站1 | 845 | 838 | 0.8 | |||
逆变站2 | 824 | 844 | 2.4 |
换流站 | 直流过电压理论 计算值/kV | 直流过电压 仿真值/kV | 相对误差/% | |||
整流站 | 932 | 937 | 0.5 | |||
逆变站1 | 855 | 882 | 3.1 | |||
逆变站2 | 861 | 878 | 1.9 |
表 3 逆变站2交流故障下各换流站直流过电压理论计算值与仿真值对比
Table 3 Comparison between theoretical calculation and simulation values of DC overvoltage of all converters under AC faults of inverter station 2
换流站 | 直流过电压理论 计算值/kV | 直流过电压 仿真值/kV | 相对误差/% | |||
整流站 | 932 | 937 | 0.5 | |||
逆变站1 | 855 | 882 | 3.1 | |||
逆变站2 | 861 | 878 | 1.9 |
1 | 赵畹君. 高压直流输电工程技术[M]. 2版. 北京: 中国电力出版社, 2011. |
2 | 李惠玲, 王曦, 高剑, 等. 新型电力系统背景下西部送端直流电网方案构建[J]. 中国电力, 2023, 56 (5): 12- 21. |
LI Huiling, WANG Xi, Gao Jian, et al. Scheme construction for sending end DC grids in western China under the background of new power system[J]. Electric Power, 2023, 56 (5): 12- 21. | |
3 | 徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017. |
4 | 徐文哲, 张哲任, 徐政. 适用于大规模纯新能源发电基地送出的混合式直流输电系统[J]. 中国电力, 2023, 56 (4): 17- 27. |
XU Wenzhe, ZHANG Zheren, XU Zheng. A hybrid HVDC topology suitable for large-scale pure clean energy power base transmission[J]. Electric Power, 2023, 56 (4): 17- 27. | |
5 | 邹常跃, 韦嵘晖, 冯俊杰, 等. 柔性直流输电发展现状及应用前景[J]. 南方电网技术, 2022, 16 (3): 1- 7. |
ZOU Changyue, WEI Ronghui, FENG Junjie, et al. Development status and application prospect of VSC-HVDC[J]. Southern Power System Technology, 2022, 16 (3): 1- 7. | |
6 | 杨仁炘, 施刚, 蔡旭, 等. 风电-多端柔直送出系统电压源型控制[J]. 中国电机工程学报, 2020, 40 (5): 1498- 1509. |
YANG Renxin, SHI Gang, CAI Xu, et al. Voltage source control of VSC-MTDC systems with wind farm integration[J]. Proceedings of the CSEE, 2020, 40 (5): 1498- 1509. | |
7 | 邓银秋, 汪震, 韩俊飞, 等. 适用于海上风电接入的多端柔直网内不平衡功率优化分配控制策略[J]. 中国电机工程学报, 2020, 40 (8): 2406- 2416. |
DENG Yinqiu, WANG Zhen, HAN Junfei, et al. Control strategy on optimal redistribution of unbalanced power for offshore wind farms integrated VSC-MTDC[J]. Proceedings of the CSEE, 2020, 40 (8): 2406- 2416. | |
8 |
张福轩, 郭贤珊, 汪楠楠, 等. 接入新能源孤岛系统的双极柔性直流系统盈余功率耗散策略[J]. 电力系统自动化, 2020, 44 (5): 154- 160.
DOI |
ZHANG Fuxuan, GUO Xianshan, WANG Nannan, et al. Surplus power dissipation strategy for bipolar VSC-HVDC system with integration of islanded renewable energy generation system[J]. Automation of Electric Power Systems, 2020, 44 (5): 154- 160.
DOI |
|
9 |
JIANG S Q, XIN Y C, LI G Q, et al. A novel DC fault ride-through method for wind farms connected to the grid through bipolar MMC-HVDC transmission[J]. IEEE Transactions on Power Delivery, 2020, 35 (6): 2937- 2950.
DOI |
10 | 杨仁炘, 张琛, 蔡旭, 等. 海上风电-柔直并网系统自同步电压源控制与电网故障穿越[J]. 中国电机工程学报, 2022, 42 (13): 4823- 4835. |
YANG Renxin, ZHANG Chen, CAI Xu, et al. Voltage source control and fault ride-through of VSC-HVDC systems with offshore wind farm integration[J]. Proceedings of the CSEE, 2022, 42 (13): 4823- 4835. | |
11 | TZELEPIS D, ROUSIS A O, DYSKO A, et al. Enhanced DC voltage control strategy for fault management of a VSC-HVDC connected offshore wind farm[C]//5th IET International Conference on Renewable Power Generation (RPG) 2016. London, UK. Institution of Engineering and Technology, 2016. |
12 | 郭贤珊, 周杨, 梅念, 等. 张北柔直电网的构建与特性分析[J]. 电网技术, 2018, 42 (11): 3698- 3707. |
GUO Xianshan, ZHOU Yang, MEI Nian, et al. Construction and characteristic analysis of Zhangbei flexible DC grid[J]. Power System Technology, 2018, 42 (11): 3698- 3707. | |
13 | ABDALRAHMAN A, ISABEGOVIC E. DolWin1 - challenges of connecting offshore wind farms[C]//2016 IEEE International Energy Conference (ENERGYCON). Leuven. IEEE, 2016: 1–10. |
14 | 许彬, 高冲, 张静. 应用于海上风电接入的VSC-HVDC系统主网侧交流故障穿越的新型直流耗能装置拓扑[J]. 中国电机工程学报, 2021, 41 (1): 88- 97, 400. |
XU Bin, GAO Chong, ZHANG Jing. A novel DC chopper topology for grid side fault ride through in VSC-HVDC based offshore wind power connection[J]. Proceedings of the CSEE, 2021, 41 (1): 88- 97, 400. | |
15 | 谢晔源, 姚宏洋, 李海英, 等. 用于VSC-HVDC系统的模块化直串式直流耗能装置[J]. 电力自动化设备, 2021, 41 (7): 117- 123. |
XIE Yeyuan, YAO Hongyang, LI Haiying, et al. Modular series-connection DC energy braking device for VSC-HVDC system[J]. Electric Power Automation Equipment, 2021, 41 (7): 117- 123. | |
16 | 赵东君, 郭春义, 刘博, 等. 抑制风电经柔直并网系统直流过电压的晶闸管型直流耗能拓扑[J]. 电力自动化设备, 2023, 43 (1): 100- 106. |
ZHAO Dongjun, GUO Chunyi, LIU Bo, et al. Thyristor based DC energy dissipation topology for restraining DC overvoltage of wind power via flexible DC grid-connected system[J]. Electric Power Automation Equipment, 2023, 43 (1): 100- 106. | |
17 | 张浩博, 向往, 文劲宇. 应对受端交流故障的海上风电柔直并网系统主动能量控制方法[J]. 中国电机工程学报, 2023, 43 (12): 4600- 4614. |
ZHANG Haobo, XIANG Wang, WEN Jinyu. Active energy control of offshore wind power MMC-HVDC system to handle AC faults of receiving-end power grid[J]. Proceedings of the CSEE, 2023, 43 (12): 4600- 4614. | |
18 | 郭贤珊, 梅念, 李探, 等. 张北柔性直流电网盈余功率问题的机理分析及控制方法[J]. 电网技术, 2019, 43 (1): 157- 164. |
GUO Xianshan, MEI Nian, LI Tan, et al. Study on solution for power surplus in Zhangbei VSC-based DC grid mechanism analysis and control method[J]. Power System Technology, 2019, 43 (1): 157- 164. | |
19 | 杨艳晨, 郭剑波, 王姗姗, 等. 柔性直流电网直流过电压分析及控制策略研究[J]. 电网技术, 2019, 43 (5): 1586- 1592. |
YANG Yanchen, GUO Jianbo, WANG Shanshan, et al. Analysis and control strategy of DC overvoltage in MMC-HVDC grid[J]. Power System Technology, 2019, 43 (5): 1586- 1592. | |
20 | 梅念, 苑宾, 李探, 等. 接入孤岛新能源电场的双极柔直换流站控制策略[J]. 电网技术, 2018, 42 (11): 3575- 3582. |
MEI Nian, YUAN Bin, LI Tan, et al. Study on control strategy of bipolar VSC station connected to islanded renewable power plant[J]. Power System Technology, 2018, 42 (11): 3575- 3582. |
[1] | 赵平, 贾浩森, 高亨孝, 李振兴. 应对岸上故障的海上风电多端柔直系统协调控制策略[J]. 中国电力, 2024, 57(8): 85-95. |
[2] | 华文,凌卫家,黄晓明,裘鹏,陆翌,于淼,卢岑岑. 舟山多端柔性直流系统在线极隔离试验[J]. 中国电力, 2016, 49(6): 78-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||