中国电力 ›› 2024, Vol. 57 ›› Issue (8): 85-95.DOI: 10.11930/j.issn.1004-9649.202308031

• 新能源 • 上一篇    下一篇

应对岸上故障的海上风电多端柔直系统协调控制策略

赵平1,2(), 贾浩森1(), 高亨孝1(), 李振兴1,2   

  1. 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002
    2. 梯级水电站运行与控制湖北省重点实验室(三峡大学),湖北 宜昌 443002
  • 收稿日期:2023-08-08 出版日期:2024-08-28 发布日期:2024-08-24
  • 作者简介:赵平(1975—),男,博士,讲师,从事电力系统稳态与控制、可再生能源并网优化运行研究,E-mail:zp1975@126.com
    贾浩森(1997—),男,通信作者,硕士研究生,从事可再生能源并网运行研究,E-mail:294325396@qq.com
    高亨孝(1998—),男,硕士研究生,从事可再生能源并网运行研究,E-mail:2436037878@qq.com
  • 基金资助:
    国家自然科学基金资助项目(52077120)。

Coordinated Control Strategy of Modular Multi-level Converter-Based Multi-terminal Direct Current System for Onshore Wind Power Faults

Ping ZHAO1,2(), Haosen JIA1(), Hengxiao GAO1(), Zhenxing LI1,2   

  1. 1. College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China
    2. Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station (China Three Gorges University), Yichang 443002, China
  • Received:2023-08-08 Online:2024-08-28 Published:2024-08-24
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.52077120).

摘要:

针对海上风电多端柔直系统岸上交流电网故障时的盈余功率问题,提出一种采用能量控制的多个海上换流站与风电机组的协调控制策略。在故障期间,部分海上换流站先启动能量控制,根据直流电压的变化抬升能量参考值,吸收直流系统中的盈余功率。剩余海上换流站对直流电压进行预测,当直流电压预测值超过限值后,剩余海上换流站启动能量控制吸收盈余功率。海上换流站在吸收盈余功率的同时对风电机组采用降压控制,根据换流站储能的增加情况降低风机侧交流电压参考值。风电机组网侧换流器根据交流电压的变化调节d轴电流参考值,减少输送到多端柔直系统的有功功率,避免多端柔直系统的直流电压越限。最后,在PSCAD/EMTDC中对不同类型的故障进行仿真,验证了所提协调控制策略的有效性。

关键词: 多端柔直系统, 交流故障, 盈余功率, 能量控制, 降压控制, 协调控制

Abstract:

This paper proposed a coordinated control strategy of multiple wind farm modular multilevel converters (WFMMCs) and wind turbines using energy control to address the issue of surplus power during faults in the onshore alternating current (AC) power grid of a modular multilevel converter based multi-terminal direct current (MMC-MTDC) system for offshore wind power. During the fault period, some WFMMCs first initiate energy control, raising the energy reference value based on changes in direct current (DC) voltage to absorb surplus power in the DC system. The remaining WFMMCs predict the DC voltage, and when the predicted DC voltage exceeds the limit, the remaining WFMMCs activate energy control to absorb surplus power. The WFMMCs adopt voltage reduction control on the wind turbine while absorbing surplus power and reduce the reference value of the AC voltage on the wind turbine side based on the increase in energy storage at the WFMMC. The grid side converter of the wind turbine adjusts the reference value of the d-axis current based on changes in AC voltage, reducing the active power transmitted to the MMC-MTDC system and avoiding the DC voltage exceeding the limit of the MMC-MTDC system. Finally, different types of faults were simulated in PSCAD/EMTDC to verify the effectiveness of the proposed coordinated control strategy.

Key words: multi-terminal flexible and direct current system, AC fault, surplus power, energy control, voltage reduction control, coordinated control