[1] 蔡旭, 杨仁炘, 周剑桥, 等. 海上风电直流送出与并网技术综述[J]. 电力系统自动化, 2021, 45(21): 2–22 CAI Xu, YANG Renxin, ZHOU Jianqiao, et al. Review on offshore wind power integration via DC transmission[J]. Automation of Electric Power Systems, 2021, 45(21): 2–22 [2] 唐巍, 郭雨桐, 闫姝, 等. 多场景海上风电场关键设备技术经济性分析[J]. 中国电力, 2021, 54(7): 178–184, 216 TANG Wei, GUO Yutong, YAN Shu, et al. Techno-economic analysis of key equipment for offshore wind farms with multiple scenarios[J]. Electric Power, 2021, 54(7): 178–184, 216 [3] 赵红阳, 叶荣, 王秀丽, 等. 计及风电汇集系统静态电压稳定性的网储联合规划[J]. 智慧电力, 2021, 49(5): 15–20, 34 ZHAO Hongyang, YE Rong, WANG Xiuli, et al. Coordinated planning of transmission network and energy storage systems considering static voltage stability of wind integration system[J]. Smart Power, 2021, 49(5): 15–20, 34 [4] 向宁, 王礼茂, 屈秋实, 等. 基于生命周期评估的海、陆风电系统排放对比[J]. 资源科学, 2021, 43(4): 745–755 XIANG Ning, WANG Limao, QU Qiushi, et al. Comparison of emissions from offshore and onshore wind power systems based on life cycle assessment[J]. Resources Science, 2021, 43(4): 745–755 [5] 谭振龙, 钱相宜, 蔡文畅. 配置高抗站的海上风电长距离海缆送出继电保护分析[J]. 中国电力, 2021, 54(8): 175–181 TAN Zhenlong, QIAN Xiangyi, CAI Wenchang. Analysis of relay protection for offshore wind power long-distance submarine cable transmission with high resistance station[J]. Electric Power, 2021, 54(8): 175–181 [6] HOU P, HU W H, SOLTANI M, et al. Combined optimization for offshore wind turbine micro siting[J]. Applied Energy, 2017, 189: 271–282. [7] WANG L, WU J H, WANG T G, et al. An optimization method based on random fork tree coding for the electrical networks of offshore wind farms[J]. Renewable Energy, 2020, 147: 1340–1351. [8] 谭任深. 海上风电场工程集电系统拓扑设计研究[J]. 南方能源建设, 2015, 2(3): 67–71 TAN Renshen. Research on the topology design of offshore wind farm collection system[J]. Southern Energy Construction, 2015, 2(3): 67–71 [9] 陈宁. 大型海上风电场集电系统优化研究[D]. 上海: 上海电力学院, 2011. CHEN Ning. Large-scale offshore wind farm electrical collection systems optimization[D]. Shanghai: Shanghai University of Electric Power, 2011. [10] HUANG L L, CHEN N, ZHANG H Y, et al. Optimization of large-scale offshore wind farm electrical collection systems based on improved FCM[C]//International Conference on Sustainable Power Generation and Supply (SUPERGEN 2012). Hangzhou. IET, 2012: 1–6. [11] 赵东来, 牛东晓, 杨尚东, 等. 基于改进遗传算法的海上风电场消纳拓扑结构优化模型[J]. 中南大学学报(自然科学版), 2019, 50(4): 998–1004 ZHAO Donglai, NIU Dongxiao, YANG Shangdong, et al. Optimizing model of topological structure for offshore wind farm absorption based on improved genetic algorithms[J]. Journal of Central South University (Science and Technology), 2019, 50(4): 998–1004 [12] ZUO T J, MENG K, TONG Z Y, et al. Offshore wind farm collector system layout optimization based on self-tracking minimum spanning tree[J]. International Transactions on Electrical Energy Systems, 2019, 29(2): e2729. [13] SHIN J S, KIM J O. Optimal design for offshore wind farm considering inner grid layout and offshore substation location[J]. IEEE Transactions on Power Systems, 2017, 32(3): 2041–2048. [14] 戚远航, 侯鹏, 金荣森. 基于Q学习粒子群算法的海上风电场电气系统拓扑优化[J]. 电力系统自动化, 2021, 45(21): 66–75 QI Yuanhang, HOU Peng, JIN Rongsen. Optimization of electrical system topology for offshore wind farm based on Q-learning particle swarm optimization algorithm[J]. Automation of Electric Power Systems, 2021, 45(21): 66–75 [15] DUTTA S, OVERBYE T J. Optimal wind farm collector system topology design considering total trenching length[J]. IEEE Transactions on Sustainable Energy, 2012, 3(3): 339–348. [16] HOU P, HU W H, ZHE C. Offshore substation locating in wind farms based on prim algorithm[C]//2015 IEEE Power & Energy Society General Meeting. Denver, CO, USA. IEEE, 2015: 1–5. [17] 汪惟源, 乔颖, 窦飞, 等. 基于改进遗传算法的海上风电场集电系统拓扑优化[J]. 中国电力, 2019, 52(1): 63–68 WANG Weiyuan, QIAO Ying, DOU Fei, et al. Optimization of offshore wind farm collector systems based on improved genetic algorithm[J]. Electric Power, 2019, 52(1): 63–68 [18] HOU P, HU W H, CHEN C, et al. Overall optimization for offshore wind farm electrical system[J]. Wind Energy, 2017, 20(6): 1017–1032. [19] AURENHAMMER F. Voronoi diagrams—a survey of a fundamental geometric data structure[J]. ACM Computing Surveys, 1991, 23(3): 345–405. [20] FANG Z X, TU W, LI Q Q, et al. A Voronoi neighborhood-based search heuristic for distance/capacity constrained very large vehicle routing problems[J]. International Journal of Geographical Information Science, 2013, 27(4): 741–764. [21] OKABE A, BOOTS B, SUGIHARA K, et al. Spatial tessellations: concepts and applications of Voronoi diagrams[M]. John Wiley & Sons, 2009. [22] 曲名新, 邓少平, 翟学, 等. 考虑多升压站与障碍区的海上风电场集电系统拓扑优化[J]. 水利水电技术(中英文), 2022, 53(2): 184–193 QU Mingxin, DENG Shaoping, ZHAI Xue, et al. Multiple booster stations and obstacle areas-considered topology optimization of offshore wind farm power collection system[J]. Water Resources and Hydropower Engineering, 2022, 53(2): 184–193 [23] 梁小华, 杨欢红, 薛冰, 等. 一种配电网开路潮流转移危险线路的识别方法[J]. 电力系统保护与控制, 2021, 49(23): 11–17 LIANG Xiaohua, YANG Huanhong, XUE Bing, et al. An identification method for dangerous lines under power flow transfer in a distribution network open circuit[J]. Power System Protection and Control, 2021, 49(23): 11–17 [24] 黄伟, 闫彬禹, 谭茂强, 等. 考虑障碍区影响的海上风电场集电系统拓扑设计[J]. 现代电力, 2018, 35(1): 6–13 HUANG Wei, YAN Binyu, TAN Maoqiang, et al. Research on optimal design of wind power collection system for offshore wind farms considering the influence of obstacles area[J]. Modern Electric Power, 2018, 35(1): 6–13
|