中国电力 ›› 2024, Vol. 57 ›› Issue (7): 173-181.DOI: 10.11930/j.issn.1004-9649.202307014
叶婧1,2(), 蔡俊文1,2(
), 张磊1,2(
), 周广浩3, 何杰辉1,2, 翟学4
收稿日期:
2023-07-04
接受日期:
2024-05-21
出版日期:
2024-07-28
发布日期:
2024-07-23
作者简介:
叶婧(1986—),女,博士,讲师,从事大规模新能源接入后电力系统运行与控制等研究,E-mail:yejing2000310@163.com基金资助:
Jing YE1,2(), Junwen CAI1,2(
), Lei ZHANG1,2(
), Guanghao ZHOU3, Jiehui HE1,2, Xue ZHAI4
Received:
2023-07-04
Accepted:
2024-05-21
Online:
2024-07-28
Published:
2024-07-23
Supported by:
摘要:
海缆实际载流量是海缆选型的重要依据,在海上风电场集电系统拓扑优化中,考虑不同敷设区段海缆载流量存在的差异以及海缆多回路并联敷设时磁热效应对载流量的影响,对保障集电系统的安全性具有重要意义。首先,采用模糊C均值算法对风机进行聚类分区,将集电系统拓扑优化分解为分区内、外拓扑优化。然后,在分区内采用基于Voronoi图的拓扑搜索算法进行求解;在分区外拓扑优化中,考虑海缆瓶颈区段、回路数对载流量的影响,构建混合整数非线性优化模型,线性化后采用优化求解器GUROBI进行求解。最后,以某实际风电场为例进行仿真验证。结果表明,所提模型能保证海缆实际载流量始终大于海缆工作电流,可有效保障集电系统的安全性。
叶婧, 蔡俊文, 张磊, 周广浩, 何杰辉, 翟学. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181.
Jing YE, Junwen CAI, Lei ZHANG, Guanghao ZHOU, Jiehui HE, Xue ZHAI. Topology Optimization of Offshore Wind Power Collection System Considering Actual Carrying Capacity of Submarine Cables[J]. Electric Power, 2024, 57(7): 173-181.
海缆截 面积/ mm2 | 海底敷 设载流 量/A | J型管 敷设载 流量/A | 空气敷 设载流 量/A | 电阻/ (Ω·km–1) | 电感/ (mH·km–1) | 购置成本/ (万元·km–1) | ||||||
3×70 | 251 | 246 | 279 | 0.342 | 0.483 | 73.5 | ||||||
3×95 | 297 | 293 | 333 | 0.246 | 0.461 | 78.5 | ||||||
3×120 | 335 | 334 | 379 | 0.196 | 0.445 | 83.4 | ||||||
3×150 | 374 | 377 | 427 | 0.159 | 0.431 | 92.5 | ||||||
3×185 | 416 | 422 | 478 | 0.127 | 0.415 | 98.9 | ||||||
3×240 | 474 | 487 | 550 | 0.097 6 | 0.399 | 113.9 | ||||||
3×300 | 525 | 546 | 615 | 0.077 8 | 0.385 | 133.2 | ||||||
3×400 | 577 | 637 | 714 | 0.061 4 | 0.374 | 151.0 |
表 1 海缆参数
Table 1 Parameters of submarine cable
海缆截 面积/ mm2 | 海底敷 设载流 量/A | J型管 敷设载 流量/A | 空气敷 设载流 量/A | 电阻/ (Ω·km–1) | 电感/ (mH·km–1) | 购置成本/ (万元·km–1) | ||||||
3×70 | 251 | 246 | 279 | 0.342 | 0.483 | 73.5 | ||||||
3×95 | 297 | 293 | 333 | 0.246 | 0.461 | 78.5 | ||||||
3×120 | 335 | 334 | 379 | 0.196 | 0.445 | 83.4 | ||||||
3×150 | 374 | 377 | 427 | 0.159 | 0.431 | 92.5 | ||||||
3×185 | 416 | 422 | 478 | 0.127 | 0.415 | 98.9 | ||||||
3×240 | 474 | 487 | 550 | 0.097 6 | 0.399 | 113.9 | ||||||
3×300 | 525 | 546 | 615 | 0.077 8 | 0.385 | 133.2 | ||||||
3×400 | 577 | 637 | 714 | 0.061 4 | 0.374 | 151.0 |
电缆回路数/根 | 修正系数 | |
1 | 1.00 | |
2 | 0.88 | |
3 | 0.82 | |
4 | 0.79 | |
6 | 0.76 | |
······ | ······ |
表 2 电缆回路数修正系数
Table 2 Correction factors for number of circuits
电缆回路数/根 | 修正系数 | |
1 | 1.00 | |
2 | 0.88 | |
3 | 0.82 | |
4 | 0.79 | |
6 | 0.76 | |
······ | ······ |
分区 编号 | 升压站 编号 | 空气 敷设 | 海底 敷设 | J型管 敷设 | 瓶颈段 载流量 | |||||
2 | 2 | 692.96 | 770.44 | 769.08 | 692.96 | |||||
4 | 2 | 579.50 | 594.31 | 649.74 | 579.50 | |||||
1 | 1 | 646.00 | 594.31 | 649.74 | 594.31 | |||||
11 | 1 | 556.24 | 540.75 | 556.92 | 540.75 | |||||
13 | 1 | 386.24 | 385.22 | 384.54 | 384.54 | |||||
23 | 1 | 386.24 | 385.22 | 384.54 | 384.54 |
表 3 部分馈线在不同敷设区段实际海缆载流量对比
Table 3 Comparison of actual carrying capacity of submarine cables with feeder lines in different laying sections 单位:A
分区 编号 | 升压站 编号 | 空气 敷设 | 海底 敷设 | J型管 敷设 | 瓶颈段 载流量 | |||||
2 | 2 | 692.96 | 770.44 | 769.08 | 692.96 | |||||
4 | 2 | 579.50 | 594.31 | 649.74 | 579.50 | |||||
1 | 1 | 646.00 | 594.31 | 649.74 | 594.31 | |||||
11 | 1 | 556.24 | 540.75 | 556.92 | 540.75 | |||||
13 | 1 | 386.24 | 385.22 | 384.54 | 384.54 | |||||
23 | 1 | 386.24 | 385.22 | 384.54 | 384.54 |
方案 | 1号升压站回路数/根 | 2号升压站回路数/根 | ||
方案1修正前 | 18 | 17 | ||
方案1修正后 | 19 | 22 | ||
方案2 | 20 | 16 |
表 4 2种方案中升压站接入回路数对比
Table 4 Comparison of circuit numbers of booster station access in two schemes
方案 | 1号升压站回路数/根 | 2号升压站回路数/根 | ||
方案1修正前 | 18 | 17 | ||
方案1修正后 | 19 | 22 | ||
方案2 | 20 | 16 |
方案 | 馈线敷设 长度/km | 馈线海缆 成本/万元 | 馈线海缆 线损/MW | |||
方案1修正前 | 157.43 | 31859.20 | 11.87 | |||
方案1修正后 | 157.43 | 34513.37 | 10.56 | |||
方案2 | 159.99 | 33243.15 | 10.71 |
表 5 2种方案经济性对比
Table 5 Economic comparison of two schemes
方案 | 馈线敷设 长度/km | 馈线海缆 成本/万元 | 馈线海缆 线损/MW | |||
方案1修正前 | 157.43 | 31859.20 | 11.87 | |||
方案1修正后 | 157.43 | 34513.37 | 10.56 | |||
方案2 | 159.99 | 33243.15 | 10.71 |
分区 编号 | 连接升 压站 编号 | 工作 电流/ A | 修正前 | 修正后 | ||||||||||||
海缆载 流量/A | 海缆截 面/mm2 | 瓶颈 段 | 海缆实际 载流量/A | 海缆截 面/mm2 | 瓶颈 段 | |||||||||||
1 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
2 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
3 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
4 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
5 | 2 | 583.428 | 594.31 | 3×400 | 海底 | 614.88 | 2×3×120 | 空气 | ||||||||
6 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
7 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
8 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
9 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
10 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
11 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
12 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
13 | 1 | 364.643 | 384.54 | 3×150 | J型管 | 417.24 | 3×240 | 空气 | ||||||||
14 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
15 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
16 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
17 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
18 | 2 | 437.571 | 488.22 | 3×240 | 海底 | 446.52 | 3×240 | 空气 | ||||||||
19 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
20 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
21 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
22 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
23 | 1 | 364.643 | 384.54 | 3×150 | J型管 | 417.24 | 3×240 | 空气 | ||||||||
24 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
25 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
26 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
27 | 2 | 437.571 | 488.22 | 3×240 | 海底 | 446.52 | 3×240 | 空气 | ||||||||
28 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
29 | 1 | 437.571 | 488.22 | 3×240 | 海底 | 466.26 | 3×300 | 空气 | ||||||||
30 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 |
表 6 方案1馈线海缆选型
Table 6 Selection of submarine cable with feeder line in scheme 1
分区 编号 | 连接升 压站 编号 | 工作 电流/ A | 修正前 | 修正后 | ||||||||||||
海缆载 流量/A | 海缆截 面/mm2 | 瓶颈 段 | 海缆实际 载流量/A | 海缆截 面/mm2 | 瓶颈 段 | |||||||||||
1 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
2 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
3 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
4 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
5 | 2 | 583.428 | 594.31 | 3×400 | 海底 | 614.88 | 2×3×120 | 空气 | ||||||||
6 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
7 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
8 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
9 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
10 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
11 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
12 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
13 | 1 | 364.643 | 384.54 | 3×150 | J型管 | 417.24 | 3×240 | 空气 | ||||||||
14 | 2 | 656.357 | 681.36 | 2×3×120 | J型管 | 692.96 | 2×3×150 | 空气 | ||||||||
15 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
16 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
17 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
18 | 2 | 437.571 | 488.22 | 3×240 | 海底 | 446.52 | 3×240 | 空气 | ||||||||
19 | 2 | 510.500 | 540.75 | 3×300 | 海底 | 579.50 | 3×400 | 空气 | ||||||||
20 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
21 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
22 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
23 | 1 | 364.643 | 384.54 | 3×150 | J型管 | 417.24 | 3×240 | 空气 | ||||||||
24 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
25 | 1 | 583.428 | 594.31 | 3×400 | 海底 | 647.52 | 2×3×150 | 空气 | ||||||||
26 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
27 | 2 | 437.571 | 488.22 | 3×240 | 海底 | 446.52 | 3×240 | 空气 | ||||||||
28 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 | ||||||||
29 | 1 | 437.571 | 488.22 | 3×240 | 海底 | 466.26 | 3×300 | 空气 | ||||||||
30 | 1 | 510.500 | 540.75 | 3×300 | 海底 | 541.50 | 3×400 | 空气 |
分区 编号 | 连接升压 站编号 | 工作 电流/A | 海缆实际 载流量/A | 海缆截面/ mm2 | 瓶颈段 | |||||
1 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
2 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
3 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
4 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
5 | 2 | 583.428 | 614.88 | 2×3×120 | 空气 | |||||
6 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
7 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
8 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
9 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
10 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
11 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
12 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
13 | 1 | 364.643 | 384.54 | 3×150 | J型管 | |||||
14 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
15 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
16 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
17 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
18 | 2 | 437.571 | 446.52 | 3×240 | 空气 | |||||
19 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
20 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
21 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
22 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
23 | 1 | 364.643 | 384.54 | 3×150 | J型管 | |||||
24 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
25 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
26 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
27 | 2 | 437.571 | 446.52 | 3×240 | 空气 | |||||
28 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
29 | 1 | 437.571 | 488.22 | 3×240 | 海底 | |||||
30 | 1 | 510.500 | 540.75 | 3×300 | 海底 |
表 7 方案2馈线海缆选型
Table 7 Selection of submarine cable with feeder line in scheme 2
分区 编号 | 连接升压 站编号 | 工作 电流/A | 海缆实际 载流量/A | 海缆截面/ mm2 | 瓶颈段 | |||||
1 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
2 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
3 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
4 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
5 | 2 | 583.428 | 614.88 | 2×3×120 | 空气 | |||||
6 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
7 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
8 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
9 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
10 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
11 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
12 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
13 | 1 | 364.643 | 384.54 | 3×150 | J型管 | |||||
14 | 2 | 656.357 | 692.96 | 2×3×150 | 空气 | |||||
15 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
16 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
17 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
18 | 2 | 437.571 | 446.52 | 3×240 | 空气 | |||||
19 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
20 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
21 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
22 | 2 | 510.500 | 579.50 | 3×400 | 空气 | |||||
23 | 1 | 364.643 | 384.54 | 3×150 | J型管 | |||||
24 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
25 | 1 | 583.428 | 594.31 | 3×400 | 海底 | |||||
26 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
27 | 2 | 437.571 | 446.52 | 3×240 | 空气 | |||||
28 | 1 | 510.500 | 540.75 | 3×300 | 海底 | |||||
29 | 1 | 437.571 | 488.22 | 3×240 | 海底 | |||||
30 | 1 | 510.500 | 540.75 | 3×300 | 海底 |
1 | 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36 (14): 3758- 3770. |
CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36 (14): 3758- 3770. | |
2 | 黄碧斌, 张运洲, 王彩霞. 中国 “十四五” 新能源发展研判及需要关注的问题[J]. 中国电力, 2020, 53 (1): 1- 9. |
HUANG Bibin, ZHANG Yunzhou, WANG Caixia. New energy development and issues in China during the 14th five-year plan[J]. Electric Power, 2020, 53 (1): 1- 9. | |
3 | 宋冬然, 晏嘉琪, 夏鄂, 等. 基于改进麻雀搜索算法的大型海上风电场电缆布置优化[J]. 电力系统保护与控制, 2022, 50 (12): 134- 143. |
SONG Dongran, YAN Jiaqi, XIA E, et al. Optimization of cable layout for large-scale offshore wind farms based on an improved sparrow search algorithm[J]. Power System Protection and Control, 2022, 50 (12): 134- 143. | |
4 | 严新荣, 张宁宁, 马奎超, 等. 我国海上风电发展现状与趋势综述[J]. 发电技术, 2024, 45 (1): 1- 12. |
YAN Xinrong, ZHANG Ningning, MA Kuichao, et al. Overview of current situation and trend of offshore wind power development in China[J]. Power Generation Technology, 2024, 45 (1): 1- 12. | |
5 | 林钰, 胡意茹, 李茜, 等. 复杂环境中海底电缆温度场及载流量模型研究[J]. 电子测量与仪器学报, 2021, 35 (11): 39- 46. |
LIN Yu, HU Yiru, LI Qian, et al. Analysis of submarine cable temperature field and ampacity model in complex environment[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35 (11): 39- 46. | |
6 | 李萌. 海底电缆载流量计算方法的研究与应用[D]. 北京: 华北电力大学. 2018. |
LI Meng. Research and application of ampacity calculation method of submarine cable[D]. Beijing: North China Electric Power University, 2018. | |
7 | 梁永春. 高压电力电缆温度场和载流量评估研究动态[J]. 高电压技术, 2016, 42 (4): 1142- 1150. |
LIANG Yongchun. Technological development in evaluating the temperature and ampacity of power cables[J]. High Voltage Engineering, 2016, 42 (4): 1142- 1150. | |
8 | 游磊. 海上风电场送出海缆载流量瓶颈区段与提升方法研究[D]. 广州: 华南理工大学, 2018. |
YOU Lei. Study on the bottleneck section and improvement methods of ampacity of export submarine cable in offshore wind farms[D]. Guangzhou: South China University of Technology, 2018. | |
9 |
XIONG L, CHEN Y H, JIAO Y, et al. Study on the effect of cable group laying mode on temperature field distribution and cable ampacity[J]. Energies, 2019, 12 (17): 3397.
DOI |
10 | 刘士利, 罗英楠, 刘宗烨, 等. 基于电磁-热耦合原理的三芯铠装电缆在低频输电方式下的损耗特性研究[J]. 电工技术学报, 2021, 36 (22): 4829- 4836. |
LIU Shili, LUO Yingnan, LIU Zongye, et al. Study on loss characteristics of three core armored cable under low-frequency transmission mode based on electromagnetic, thermal coupling principle[J]. Transactions of China Electrotechnical Society, 2021, 36 (22): 4829- 4836. | |
11 |
何旭涛, 马兴端, 闫循平. 降低高压海底电缆登陆段电能损耗的措施研究[J]. 浙江电力, 2011, 30 (10): 29- 31.
DOI |
HE Xutao, MA Xingduan, YAN Xunping. Research on power loss reduction measures for landing parts of high voltage submarine power cables[J]. Zhejiang Electric Power, 2011, 30 (10): 29- 31.
DOI |
|
12 |
DUTTA S, OVERBYE T J. Optimal wind farm collector system topology design considering total trenching length[J]. IEEE Transactions on Sustainable Energy, 2012, 3 (3): 339- 348.
DOI |
13 | HOU P, HU W H, CHEN Z. Offshore substation locating in wind farms based on prim algorithm[C]//2015 IEEE Power & Energy Society General Meeting. Denver, CO, USA. IEEE, 2015. |
14 | 符杨, 吴靖, 魏书荣. 大型海上风电场集电系统拓扑结构优化与规划[J]. 电网技术, 2013, 37 (9): 2553- 2558. |
FU Yang, WU Jing, WEI Shurong. Topology optimization and planning of power collection system for large-scale offshore wind farm[J]. Power System Technology, 2013, 37 (9): 2553- 2558. | |
15 | 汪惟源, 乔颖, 窦飞, 等. 基于改进遗传算法的海上风电场集电系统拓扑优化[J]. 中国电力, 2019, 52 (1): 63- 68. |
WANG Weiyuan, QIAO Ying, DOU Fei, et al. Optimization of offshore wind farm collector systems based on improved genetic algorithm[J]. Electric Power, 2019, 52 (1): 63- 68. | |
16 |
FISCHETTI M, PISINGER D. Optimizing wind farm cable routing considering power losses[J]. European Journal of Operational Research, 2018, 270 (3): 917- 930.
DOI |
17 | 黄伟, 闫彬禹, 谭茂强, 等. 考虑障碍区影响的海上风电场集电系统拓扑设计[J]. 现代电力, 2018, 35 (1): 6- 13. |
HUANG Wei, YAN Binyu, TAN Maoqiang, et al. Research on optimal design of wind power collection system for offshore wind farms considering the influence of obstacles area[J]. Modern Electric Power, 2018, 35 (1): 6- 13. | |
18 | 叶婧, 周广浩, 张磊, 等. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56 (6): 167- 175. |
YE Jing, ZHOU Guanghao, ZHANG Lei, et al. Path optimization of submarine cables for offshore wind farm considering feeder crossing avoidance[J]. Electric Power, 2023, 56 (6): 167- 175. | |
19 |
JIN R S, HOU P, YANG G Y, et al. Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model[J]. Applied Energy, 2019, 254, 113719.
DOI |
20 | 王朝辉, 黄松阁, 林斌, 等. 基于海上风电场区66 kV集电系统海缆最大截面经济性分析[J]. 中国电力, 2023, 56 (11): 20- 28. |
WANG Chaohui, HUANG Songge, LIN Bin, et al. Economic analysis of maximum cross-section of submarine cables for 66 kV offshore wind farm collection systems[J]. Electric Power, 2023, 56 (11): 20- 28. | |
21 | Power cables with extruded insulation and their accessories for rated voltages for 1 kV up to 30 kV: IEC60502-2 [S]. |
22 |
CHIPPENDALE R D, PILGRIM J A, GODDARD K F, et al. Analytical thermal rating method for cables installed in J-tubes[J]. IEEE Transactions on Power Delivery, 2017, 32 (4): 1721- 1729.
DOI |
[1] | 徐树文, 卓谷颖, 李壮, 刘敏, 穆清. 基于PSD-BPA数据的ADPSS大电网电磁暂态转换建模方法与软件实现[J]. 中国电力, 2024, 57(8): 182-189. |
[2] | 李瀚儒, 刘智健, 来立永, 黄凌宇, 丁施尹, 刘任, 唐波. 考虑气象参数预测误差条件分布的架空输电线路载流量概率预测方法[J]. 中国电力, 2024, 57(2): 103-114. |
[3] | 叶婧, 周广浩, 张磊, 杨莉, 翟学, 蔡俊文. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56(6): 167-175. |
[4] | 王朝辉, 黄松阁, 林斌, 陈雨薇, 范淑敏, 施朝晖. 基于海上风电场区66 kV集电系统海缆最大截面经济性分析[J]. 中国电力, 2023, 56(11): 20-28. |
[5] | 杨源, 阳熹, 谭江平, 陈亮, 辛妍丽, 陈夏. 海上风电场无功配置优化方案[J]. 中国电力, 2020, 53(11): 195-201. |
[6] | 汪惟源, 乔颖, 窦飞, 杨林, 张宇精. 基于改进遗传算法的海上风电场集电系统拓扑优化[J]. 中国电力, 2019, 52(1): 63-68. |
[7] | 陈西平, 张龙, 刘斌, 孙振权, 李洪杰. 基于地下电缆表面温度的土壤热参数评估及载流量预测[J]. 中国电力, 2014, 47(9): 83-87. |
[8] | 丁明, 马彪, 韩平平. 用P-V分析法比较几种风电场静态等值建模[J]. 中国电力, 2013, 46(1): 26-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||