中国电力 ›› 2024, Vol. 57 ›› Issue (2): 103-114.DOI: 10.11930/j.issn.1004-9649.202310097
李瀚儒1(), 刘智健1, 来立永1, 黄凌宇1, 丁施尹1, 刘任2(
), 唐波2(
)
收稿日期:
2023-10-31
出版日期:
2024-02-28
发布日期:
2024-02-28
作者简介:
李瀚儒(1983—),男,硕士,高级工程师,从事输电线路运行管理研究,E-mail:15802031566@139.com基金资助:
Hanru LI1(), Zhijian LIU1, Liyong LAI1, Lingyu HUANG1, Shiyin DING1, Ren LIU2(
), Bo TANG2(
)
Received:
2023-10-31
Online:
2024-02-28
Published:
2024-02-28
Supported by:
摘要:
准确考虑气象参数预测误差是实现架空输电线路动态载流量精准预测的基本前提。通过统计与计算分析,首次发现在不同气象参数预测值与气象环境下,气象参数预测误差具有不同分布特征。然而,现有架空输电线路载流量概率预测方法并未考虑以上2种因素的影响,难以实现线路载流量的准确预测。为此,首先将气象参数预测误差分析问题构建为气象参数预测值与气象环境2种影响因素下的气象参数预测误差条件分布求解问题;其次引入Sklar定理及其Copula函数和非参数核密度估计法,构建了一种气象参数预测误差条件分布的求解方法;然后结合蒙特卡洛采样法,提出了一种考虑气象参数预测误差条件分布的架空输电线路载流量概率预测新方法。最后通过计算分析发现:相比于2种传统方法,所提方法在考虑气象参数预测值与气象环境2种因素对气象参数预测误差概率分布的影响后,预测区间覆盖率分别提高了5.51、1.99个百分点,预测区间标准化平均宽度分别降低了7.86、3.62个百分点,验证了该方法的准确性与实用性。
李瀚儒, 刘智健, 来立永, 黄凌宇, 丁施尹, 刘任, 唐波. 考虑气象参数预测误差条件分布的架空输电线路载流量概率预测方法[J]. 中国电力, 2024, 57(2): 103-114.
Hanru LI, Zhijian LIU, Liyong LAI, Lingyu HUANG, Shiyin DING, Ren LIU, Bo TANG. Current-carrying Capacity Probability Prediction of Overhead Transmission Line Considering Conditional Distribution Prediction Errors of Meteorological Parameters[J]. Electric Power, 2024, 57(2): 103-114.
图 4 环境温度归一化预测值为0.4时预测误差的条件分布
Fig.4 Conditional distribution of prediction errors when the normalized predicted value for environmental temperature is 0.4
图 5 晴天条件下环境温度归一化预测值为0.8时预测误差的条件分布
Fig.5 Conditional distribution of prediction errors for environmental temperature with a normalized predicted value of 0.8 under clear sky condition
气象参数 | 天气状况或季节 | τ | ||
环境温度 | 晴天 | 0.907 2 | ||
雨天 | 0.724 5 | |||
多云 | 0.771 3 | |||
其他天气 | 0.651 4 | |||
日照强度 | 晴天 | 0.911 2 | ||
雨天 | 0.763 2 | |||
多云 | 0.803 7 | |||
其他天气 | 0.661 9 | |||
风速 | 春季 | 0.757 4 | ||
夏季 | 0.633 5 | |||
秋季 | 0.870 7 | |||
冬季 | 0.584 6 |
表 1 气象参数预测值与预测误差的相关性
Table 1 Correlation between predicted values of meteorological parameters and prediction errors
气象参数 | 天气状况或季节 | τ | ||
环境温度 | 晴天 | 0.907 2 | ||
雨天 | 0.724 5 | |||
多云 | 0.771 3 | |||
其他天气 | 0.651 4 | |||
日照强度 | 晴天 | 0.911 2 | ||
雨天 | 0.763 2 | |||
多云 | 0.803 7 | |||
其他天气 | 0.661 9 | |||
风速 | 春季 | 0.757 4 | ||
夏季 | 0.633 5 | |||
秋季 | 0.870 7 | |||
冬季 | 0.584 6 |
线路参数 | 线路数据 | |
导线类型 | LGJ-300/25 | |
计算截面积/mm2 | 333.31 | |
导线外径/mm | 23.76 | |
额定电压/kV | 110 | |
最大允许温度/℃ | 70 | |
直流电阻/(Ω·km–1) | 0.094 33 | |
原额定值(静态载流量)/A | 572.61 |
表 2 架空输电线路的具体参数
Table 2 Specific parameters of overhead transmission line
线路参数 | 线路数据 | |
导线类型 | LGJ-300/25 | |
计算截面积/mm2 | 333.31 | |
导线外径/mm | 23.76 | |
额定电压/kV | 110 | |
最大允许温度/℃ | 70 | |
直流电阻/(Ω·km–1) | 0.094 33 | |
原额定值(静态载流量)/A | 572.61 |
置信水平 | 预测方法 | 评价指标 | ||||
P1/% | P2/% | |||||
90% | 1) | 86.15 | 28.42 | |||
2) | 89.67 | 24.18 | ||||
本文 | 91.66 | 20.56 | ||||
95% | 1) | 93.47 | 41.34 | |||
2) | 95.05 | 37.73 | ||||
本文 | 96.19 | 31.23 | ||||
99% | 1) | 98.81 | 47.46 | |||
2) | 99.10 | 43.18 | ||||
本文 | 99.76 | 39.52 |
表 3 不同方法预测精度评价指标对比
Table 3 Comparison of prediction accuracy evaluation metrics for different methods
置信水平 | 预测方法 | 评价指标 | ||||
P1/% | P2/% | |||||
90% | 1) | 86.15 | 28.42 | |||
2) | 89.67 | 24.18 | ||||
本文 | 91.66 | 20.56 | ||||
95% | 1) | 93.47 | 41.34 | |||
2) | 95.05 | 37.73 | ||||
本文 | 96.19 | 31.23 | ||||
99% | 1) | 98.81 | 47.46 | |||
2) | 99.10 | 43.18 | ||||
本文 | 99.76 | 39.52 |
1 | 于琳琳, 严格, 晏昕童, 等. 考虑电网支撑能力约束的直流落点及定容优化规划[J]. 中国电力, 2023, 56 (8): 175- 185. |
YU Linlin, YAN Ge, YAN Xintong, et al. Optimal planning of terminal locations and capacity of UHVDC considering constraints of receiving-end power grid support capability[J]. Electric Power, 2023, 56 (8): 175- 185. | |
2 | 李惠玲. 新型电力系统背景下西部送端直流电网及系统运行特性[J]. 中国电力, 2023, 56 (8): 166- 174. |
LI Huiling. Sending-terminal DC power grid in Western China and its operation characteristics in the context of new power system[J]. Electric Power, 2023, 56 (8): 166- 174. | |
3 | 高正男, 胡姝博, 金田, 等. 考虑传输线动态增容风险的电力系统日前调度模型[J]. 高电压技术, 2023, 49 (8): 3215- 3226. |
GAO Zhengnan, HU Shubo, JIN Tian, et al. Day-ahead power system scheduling model considering transmission line dynamic capacity expansion risk[J]. High Voltage Engineering, 2023, 49 (8): 3215- 3226. | |
4 | 李惠玲, 王曦, 高剑, 等. 新型电力系统背景下西部送端直流电网方案构建[J]. 中国电力, 2023, 56 (5): 12- 21. |
LI Huiling, WANG Xi, GAO Jian, et al. Scheme construction for sending end DC grids in Western China under the background of new power system[J]. Electric Power, 2023, 56 (5): 12- 21. | |
5 | 赵会茹, 赵一航, 王路瑶, 等. 基于贝叶斯最优最劣和改进物元可拓的特高压输电工程综合效益评价[J]. 中国电力, 2022, 55 (6): 161- 171. |
ZHAO Huiru, ZHAO Yihang, WANG Luyao, et al. Comprehensive performance evaluation of UHV power transmission project based on Bayesian best-worst method and improved matter-element extension model[J]. Electric Power, 2022, 55 (6): 161- 171. | |
6 | 黄志光, 曹路, 李建华, 等. 混合多馈入直流作用下江苏受端电网安全稳定性评估及改善[J]. 中国电力, 2021, 54 (9): 55- 65. |
HUANG Zhiguang, CAO Lu, LI Jianhua, et al. Evaluation and improvement of security and stability of Jiangsu receiving-end power grid with hybrid multi-infeed DC[J]. Electric Power, 2021, 54 (9): 55- 65. | |
7 |
MÍNGUEZ R, MARTÍNEZ R, MANANA M, et al. Dynamic management in overhead lines: a successful case of reducing restrictions in renewable energy sources integration[J]. Electric Power Systems Research, 2019, 173, 135- 142.
DOI |
8 |
SAFARI N, MAZHARI S M, CHUNG C Y, et al. Secure probabilistic prediction of dynamic thermal line rating[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10 (2): 378- 387.
DOI |
9 |
ALBERDI R, ALBIZU I, FERNANDEZ E, et al. Overhead line ampacity forecasting with a focus on safety[J]. IEEE Transactions on Power Delivery, 2022, 37 (1): 329- 337.
DOI |
10 |
WANG M X, WANG S H, JIN X, et al. Prediction of intra-period minimum thermal rating of overhead conductors[J]. IEEE Transactions on Power Delivery, 2023, 38 (1): 564- 574.
DOI |
11 |
JIN X, WANG M X, CUI M J, et al. Joint probability density prediction for multiperiod thermal ratings of overhead conductors[J]. IEEE Transactions on Power Delivery, 2021, 36 (5): 3022- 3032.
DOI |
12 | 刘志成, 董向明, 严昊, 等. 融合微气象参数预测的输电线动态增容模型[J]. 电力系统及其自动化学报, 2022, 34 (1): 56- 64. |
LIU Zhicheng, DONG Xiangming, YAN Hao, et al. Dynamic line rating model of transmission line combined with prediction of micro-meteorological parameters[J]. Proceedings of the CSU-EPSA, 2022, 34 (1): 56- 64. | |
13 |
FAN F L, BELL K, INFIELD D. Probabilistic real-time thermal rating forecasting for overhead lines by conditionally heteroscedastic auto-regressive models[J]. IEEE Transactions on Power Delivery, 2017, 32 (4): 1881- 1890.
DOI |
14 | 林世治, 温步瀛, 张斌. 基于气象参数预测的输电线路输送容量概率模型研究[J]. 电工电能新技术, 2019, 38 (3): 56- 62. |
LIN Shizhi, WEN Buying, ZHANG Bin. Research on transmission line probability model based on meteorological parameter prediction[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38 (3): 56- 62. | |
15 |
POLI D, PELACCHI P, LUTZEMBERGER G, et al. The possible impact of weather uncertainty on the dynamic thermal rating of transmission power lines: a Monte Carlo error-based approach[J]. Electric Power Systems Research, 2019, 170, 338- 347.
DOI |
16 | 刘洁, 林舜江, 梁炜焜, 等. 基于高阶马尔可夫链和高斯混合模型的光伏出力短期概率预测[J]. 电网技术, 2023, 47 (1): 266- 275. |
LIU Jie, LIN Shunjiang, LIANG Weikun, et al. Short-term probabilistic forecast for power output of photovoltaic station based on high order Markov chain and Gaussian mixture model[J]. Power System Technology, 2023, 47 (1): 266- 275. | |
17 | 于宗超, 刘绚, 严康, 等. 考虑DLR和风电预测不确定性的机会约束机组组合模型[J]. 高电压技术, 2021, 47 (4): 1204- 1214. |
YU Zongchao, LIU Xuan, YAN Kang, et al. Combination model of chance-constrained security constraint unit with considering the forecast uncertainties of DLR and wind power[J]. High Voltage Engineering, 2021, 47 (4): 1204- 1214. | |
18 | 刘念璋, 杨健, 柳玉, 等. 分布函数差异化导向的风电功率预测误差气象条件概率建模方法[J]. 电力自动化设备, 2022, 42 (12): 58- 65. |
LIU Nianzhang, YANG Jian, LIU Yu, et al. Probabilistic modeling method of weather condition for wind power forecasting error based on differentiation orientation of distribution function[J]. Electric Power Automation Equipment, 2022, 42 (12): 58- 65. | |
19 | 王森, 孙永辉, 周衍, 等. 计及误差时间相依性的风电功率超短期条件概率预测[J]. 电力自动化设备, 2022, 42 (11): 40- 46. |
WANG Sen, SUN Yonghui, ZHOU Yan, et al. Ultra-short term conditional probability prediction of wind power considering error time dependence[J]. Electric Power Automation Equipment, 2022, 42 (11): 40- 46. | |
20 | Institute of Electrical and Electronics Engineers. IEEE standard for calculating the current-temperature relationship of bare overhead conductors: IEEE 738-2012[S]. 2012. |
21 | 王孔森, 盛戈皞, 孙旭日, 等. 基于径向基神经网络的输电线路动态容量在线预测[J]. 电网技术, 2013, 37 (6): 1719- 1725. |
WANG Kongsen, SHENG Gehao, SUN Xuri, et al. Online prediction of transmission dynamic line rating based on radial basis function neural network[J]. Power System Technology, 2013, 37 (6): 1719- 1725. | |
22 | 王丽朝, 孟子尧, 陈诗明, 等. 基于GRU神经网络的光伏电站数据预处理方法[J]. 太阳能学报, 2022, 43 (11): 78- 84. |
WANG Lichao, MENG Ziyao, CHEN Shiming, et al. Preprocessing method for photovoltaic power plant data based on gru neural network[J]. Acta Energiae Solaris Sinica, 2022, 43 (11): 78- 84. | |
23 | 张博, 赵滨. 一种集成风向风速的风场空间检验方法[J]. 应用气象学报, 2019, 30 (2): 154- 163. |
ZHANG Bo, ZHAO Bin. A spatial verification method for integrating wind speed and direction[J]. Journal of Applied Meteorological Science, 2019, 30 (2): 154- 163. | |
24 | 茆美琴, 洪嘉玲, 张榴晨. 考虑光伏出力预测误差修正的储能优化配置方法[J]. 太阳能学报, 2021, 42 (2): 410- 416. |
MAO Meiqin, HONG Jialing, ZHANG Liuchen. Energy storage optimization configuration method considering conditional forecast error correction[J]. Acta Energiae Solaris Sinica, 2021, 42 (2): 410- 416. | |
25 |
段偲默, 苗世洪, 霍雪松, 等. 基于动态Copula的风光联合出力建模及动态相关性分析[J]. 电力系统保护与控制, 2019, 47 (5): 35- 42.
DOI |
DUAN Simo, MIAO Shihong, HUO Xuesong, et al. Modeling and dynamic correlation analysis of wind/solar power joint output based on dynamic Copula[J]. Power System Protection and Control, 2019, 47 (5): 35- 42.
DOI |
[1] | 叶婧, 蔡俊文, 张磊, 周广浩, 何杰辉, 翟学. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181. |
[2] | 王传琦, 伍历文, 邓志斌, 邓伟锋, 杨彬. 时间累积架空输电线路覆冰预测模型与算法综述[J]. 中国电力, 2024, 57(6): 153-164, 234. |
[3] | 陈中飞, 赵越, 蔡秋娜, 张乔榆, 王泽林, 戴晓娟, 陈雨果. 基于净负荷预测误差统计的电力系统爬坡能力充裕度评估[J]. 中国电力, 2024, 57(5): 50-60. |
[4] | 李永胜, 杨加伦, 郑维刚, 刘彬, 高正旭. 辽宁省特定重现期舞动区域分布图绘制[J]. 中国电力, 2022, 55(8): 129-134. |
[5] | 赵伟博, 董玉明, 莫娟, 房正刚, 刘蕊. 电力与通信共享铁塔的关键技术与商业模式[J]. 中国电力, 2021, 54(11): 171-180. |
[6] | 李隆基, 郗晓光, 李志坚, 王晓光, 文清丰, 李琪冉, 周恺, 刘勇, 姚俊韬. 微地形环境下输电线路微气象分析与预测技术[J]. 中国电力, 2020, 53(3): 76-83. |
[7] | 孙瑛爽, 罗聪, 葛乐矣. 基于确定性解法的新能源微电网经济运行优化[J]. 中国电力, 2020, 53(10): 149-155. |
[8] | 李帆, 李阳林, 张宇, 况燕军, 胡京, 邹建章, 饶斌斌, 周龙武. 架空输电线路涉鸟故障分析与防范[J]. 中国电力, 2019, 52(10): 92-99. |
[9] | 王海涛, 冯万兴, 陶汉涛, 吴大伟, 姜志博, 张磊. 基于气象参数的输电线路电气可靠性实时评估与预警系统设计与研发[J]. 中国电力, 2018, 51(5): 17-23,67. |
[10] | 赵淳, 宋暾昉, 彭波, 吴大伟, 陶汉涛, 邓永清. 特高压输电线路污闪和风偏风险实时评估与预警[J]. 中国电力, 2018, 51(4): 15-21,66. |
[11] | 李振宇, 郭锐, 赖秋频, 杨军, 雍民, 王亮, 傅思遥. 基于计算机视觉的架空输电线路机器人巡检技术综述[J]. 中国电力, 2018, 51(11): 139-146. |
[12] | 吴立远, 毕建刚, 常文治, 杨圆, 弓艳朋. 配网架空输电线路无人机综合巡检技术[J]. 中国电力, 2018, 51(1): 97-101,138. |
[13] | 商全鸿, 赵彬. 架空输电线路防舞器排布方案效果评估技术研究[J]. 中国电力, 2017, 50(5): 121-125. |
[14] | 汪晶毅, 潘春平, 朱映洁. 国内外架空输电线路档中线间距设计的对比研究[J]. 中国电力, 2017, 50(11): 90-95. |
[15] | 胡亚伟,李江,胡立强,晁勤,胡续坤,杨扬,刘清贵. 基于风电出力预测误差补偿度与经济效益的最佳储能容量配置[J]. 中国电力, 2016, 49(5): 141-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||