中国电力 ›› 2024, Vol. 57 ›› Issue (2): 103-114.DOI: 10.11930/j.issn.1004-9649.202310097

• 电网 • 上一篇    下一篇

考虑气象参数预测误差条件分布的架空输电线路载流量概率预测方法

李瀚儒1(), 刘智健1, 来立永1, 黄凌宇1, 丁施尹1, 刘任2(), 唐波2()   

  1. 1. 广东电网有限责任公司广州供电局,广东 广州 510000
    2. 三峡大学 电气与新能源学院,湖北 宜昌 443002
  • 收稿日期:2023-10-31 出版日期:2024-02-28 发布日期:2024-02-28
  • 作者简介:李瀚儒(1983—),男,硕士,高级工程师,从事输电线路运行管理研究,E-mail:15802031566@139.com
    刘任(1990—),男,通信作者,博士,讲师,从事输变电技术研究,E-mail:liu_remail@sina.com
    唐波(1978—),男,博士,教授,从事超、特高压输电技术研究,E-mail:tangboemail@sina.com
  • 基金资助:
    国家自然科学基金联合基金重点资助项目(U20A20305);中国南方电网广州供电局科技项目(030166KK52222001)。

Current-carrying Capacity Probability Prediction of Overhead Transmission Line Considering Conditional Distribution Prediction Errors of Meteorological Parameters

Hanru LI1(), Zhijian LIU1, Liyong LAI1, Lingyu HUANG1, Shiyin DING1, Ren LIU2(), Bo TANG2()   

  1. 1. Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510000, China
    2. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
  • Received:2023-10-31 Online:2024-02-28 Published:2024-02-28
  • Supported by:
    This work is supported by Key and Joint Foundation of National Natural Science of China (No.U20A20305) and Technical Project of Guangzhou Power Supply Co., Ltd. of CSG (No.030166KK52222001).

摘要:

准确考虑气象参数预测误差是实现架空输电线路动态载流量精准预测的基本前提。通过统计与计算分析,首次发现在不同气象参数预测值与气象环境下,气象参数预测误差具有不同分布特征。然而,现有架空输电线路载流量概率预测方法并未考虑以上2种因素的影响,难以实现线路载流量的准确预测。为此,首先将气象参数预测误差分析问题构建为气象参数预测值与气象环境2种影响因素下的气象参数预测误差条件分布求解问题;其次引入Sklar定理及其Copula函数和非参数核密度估计法,构建了一种气象参数预测误差条件分布的求解方法;然后结合蒙特卡洛采样法,提出了一种考虑气象参数预测误差条件分布的架空输电线路载流量概率预测新方法。最后通过计算分析发现:相比于2种传统方法,所提方法在考虑气象参数预测值与气象环境2种因素对气象参数预测误差概率分布的影响后,预测区间覆盖率分别提高了5.51、1.99个百分点,预测区间标准化平均宽度分别降低了7.86、3.62个百分点,验证了该方法的准确性与实用性。

关键词: 架空输电线路, 载流量, 气象参数, 预测误差, 条件分布

Abstract:

Accurately accounting for the errors in meteorological parameter predictions is essential for the precise forecasting of dynamic current-carrying capacity in overhead power transmission lines. Statistical and computational analyses have revealed for the first time the distinct distribution characteristics of meteorological parameter prediction errors under varying forecasted weather conditions and environmental contexts. Existing methods for probabilistic load capacity forecasting of overhead lines fail to consider the impact of these two critical factors, leading to challenges in achieving accurate predictions. Addressing this gap, the issue of meteorological parameter prediction error analysis is formulated as a problem of solving for the conditional distribution of errors, influenced by both forecasted meteorological conditions and the environment. Incorporating Sklar's theorem, its associated Copula function, and non-parametric kernel density estimation, a novel approach to determining the conditional distribution of prediction errors is established. Further, a new methodology for probabilistic forecasting of transmission line load capacity that integrates the conditional distribution of meteorological parameter prediction errors is proposed, using Monte Carlo sampling techniques. Comparative computational analysis has demonstrated that, relative to two conventional approaches, the proposed method significantly enhances the coverage of prediction intervals by 5.51 and 1.99 percentage points, and concurrently reduces the normalized average width of these intervals by 7.86 and 3.62 percentage points. These improvements confirm the method's heightened accuracy and practicality.

Key words: overhead transmission line, current-carrying capacity, meteorological parameters, prediction errors, conditional distribution