中国电力 ›› 2024, Vol. 57 ›› Issue (2): 115-126.DOI: 10.11930/j.issn.1004-9649.202309110
李会新1,2(), 陈祥文1,2(
), 金明亮1,2(
), 刘阳1,2, 徐海洋3
收稿日期:
2023-09-25
出版日期:
2024-02-28
发布日期:
2024-02-28
作者简介:
李会新(1973—),男,通信作者,高级工程师(教授级),从事电力系统保护与控制研究,E-mail:jdbh2007@sina.com
基金资助:
Huixin LI1,2(), Xiangwen CHEN1,2(
), Mingliang JIN1,2(
), Yang LIU1,2, Haiyang XU3
Received:
2023-09-25
Online:
2024-02-28
Published:
2024-02-28
Supported by:
摘要:
常规直流逆变站交流送出线路故障通常会引发换相失败,存在故障电压和电流波形畸变等问题,可能导致工频相量距离保护性能劣化。首先,分析了工程中广泛应用的正序电压极化距离保护在常规直流逆变站交流送出线路中的适应性,分析结果表明,当逆变站运行于单回交流出线工况时,传统正序电压极化距离保护不再适用;然后,基于交流线路的RL模型,提出了基于波形相关系数的时域距离元件,可以不受逆变站非线性输出特性的影响,并针对时域距离元件存在的出口近区故障方向判别问题,利用电流畸变程度判断故障方向;最后,通过仿真验证了时域距离保护方案的有效性。
李会新, 陈祥文, 金明亮, 刘阳, 徐海洋. 常规直流逆变站交流送出线路距离保护适应性分析与对策[J]. 中国电力, 2024, 57(2): 115-126.
Huixin LI, Xiangwen CHEN, Mingliang JIN, Yang LIU, Haiyang XU. Adaptability Analysis and Countermeasures for Distance Protection of AC Transmission Lines Connected LCC-HVDC Inverter Station[J]. Electric Power, 2024, 57(2): 115-126.
正序电阻/ (Ω·km–1) | 正序电感/ (mH·km–1) | 正序电容/ (μF·km–1) | 零序电阻/ (Ω·km–1) | 零序电感/ (mH·km–1) | 零序电容/ (μF·km–1) | |||||
0.02 | 0.892 | 0.0133 | 0.249 | 3.096 | 0.00887 |
表 1 交流线路参数
Table 1 Parameters of AC transmission line
正序电阻/ (Ω·km–1) | 正序电感/ (mH·km–1) | 正序电容/ (μF·km–1) | 零序电阻/ (Ω·km–1) | 零序电感/ (mH·km–1) | 零序电容/ (μF·km–1) | |||||
0.02 | 0.892 | 0.0133 | 0.249 | 3.096 | 0.00887 |
故障 位置 | 故障 类型 | 相关 系数 | 判断 结果 | 故障 位置 | 故障 类型 | 相关 系数 | 判断 结果 | |||||||
20 km | aG | –0.98 | 区内 | 60 km | aG | –0.96 | 区内 | |||||||
ab | –0.99 | 区内 | ab | –0.97 | 区内 | |||||||||
abG | –0.99 | 区内 | abG | –0.97 | 区内 | |||||||||
abc | –0.99 | 区内 | abc | –0.97 | 区内 | |||||||||
40 km | aG | –0.97 | 区内 | 90 km | aG | 0.83 | 区外 | |||||||
ab | –0.98 | 区内 | ab | 0.84 | 区外 | |||||||||
abG | –0.98 | 区内 | abG | 0.84 | 区外 | |||||||||
abc | –0.98 | 区内 | abc | 0.84 | 区外 |
表 2 不同故障位置仿真结果
Table 2 Simulation results with different fault location
故障 位置 | 故障 类型 | 相关 系数 | 判断 结果 | 故障 位置 | 故障 类型 | 相关 系数 | 判断 结果 | |||||||
20 km | aG | –0.98 | 区内 | 60 km | aG | –0.96 | 区内 | |||||||
ab | –0.99 | 区内 | ab | –0.97 | 区内 | |||||||||
abG | –0.99 | 区内 | abG | –0.97 | 区内 | |||||||||
abc | –0.99 | 区内 | abc | –0.97 | 区内 | |||||||||
40 km | aG | –0.97 | 区内 | 90 km | aG | 0.83 | 区外 | |||||||
ab | –0.98 | 区内 | ab | 0.84 | 区外 | |||||||||
abG | –0.98 | 区内 | abG | 0.84 | 区外 | |||||||||
abc | –0.98 | 区内 | abc | 0.84 | 区外 |
1 | 周远翔, 陈健宁, 张灵, 等. “双碳” 与“新基建” 背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47 (7): 2396- 2408. |
ZHOU Yuanxiang, CHEN Jianning, ZHANG Ling, et al. Opportunity for developing ultra high voltage transmission technology under the emission peak, carbon neutrality and new infrastructure[J]. High Voltage Engineering, 2021, 47 (7): 2396- 2408. | |
2 | 游广增, 李华瑞, 李常刚, 等. 计及风电高频保护的送端电网多直流协同频率控制[J]. 中国电力, 2021, 54 (5): 83- 90, 110. |
YOU Guangzeng, LI Huarui, LI Changgang, et al. Coordinative frequency control of multi HVDC links in sending-end power grid considering over-frequency protection of wind power generation[J]. Electric Power, 2021, 54 (5): 83- 90, 110. | |
3 | 林圣, 兰菲燕, 刘健, 等. 高压直流输电送端电网暂态过电压机理与抑制策略综述[J]. 电力科学与技术学报, 2022, 37 (6): 3- 16. |
LIN Sheng, LAN Feiyan, LIU Jian, et al. Overview of transient overvoltage mechanism and suppression strategies of high voltage direct current transmission grid[J]. Journal of Electric Power Science and Technology, 2022, 37 (6): 3- 16. | |
4 | 李晓华, 张靖宜, 王玉麟, 等. 交流故障切除引起换相失败的特性分析及抑制策略[J]. 南方电网技术, 2022, 16 (9): 1- 7. |
LI Xiaohua, ZHANG Jingyi, WANG Yulin, et al. Characteristic analysis and suppression strategy for commutation failure caused by AC fault removal[J]. Southern Power System Technology, 2022, 16 (9): 1- 7. | |
5 | 陈铁, 蔡东阁, 何思敏, 等. 基于数据驱动的直流输电后续换相失败预判的研究[J]. 智慧电力, 2022, 50 (8): 68- 74. |
CHEN Tie, CAI Dongge, HE Simin, et al. Prediction of subsequent commutation failure of HVDC transmission based on data-driven[J]. Smart Power, 2022, 50 (8): 68- 74. | |
6 | 袁博, 王颖, 邵华, 等. 抑制特高压直流系统连续换相失败的非线性动态电流偏差控制[J]. 中国电力, 2021, 54 (8): 75- 82. |
YUAN Bo, WANG Ying, SHAO Hua, et al. A nonlinear dynamic current deviation control method for suppressing continuous commutation failures in UHVDC systems[J]. Electric Power, 2021, 54 (8): 75- 82. | |
7 |
宋国兵, 陶然, 李斌, 等. 含大规模电力电子装备的电力系统故障分析与保护综述[J]. 电力系统自动化, 2017, 41 (12): 2- 12.
DOI |
SONG Guobing, TAO Ran, LI Bin, et al. Survey of fault analysis and protection for power system with large scale power electronic equipments[J]. Automation of Electric Power Systems, 2017, 41 (12): 2- 12.
DOI |
|
8 | 汤未, 于溯, 郑涛, 等. 基于交直流保护协同配合的交直流碰线保护新方案[J]. 中国电力, 2022, 55 (11): 41- 50. |
TANG Wei, YU Su, ZHENG Tao, et al. A novel protection scheme of AC and DC line-touching based on coordination of AC and DC protection[J]. Electric Power, 2022, 55 (11): 41- 50. | |
9 | 李振兴, 叶诗韵, 谭洪, 等. 交直流混联系统对交流电网继电保护影响综述[J]. 电网与清洁能源, 2017, 33 (12): 41- 47. |
LI Zhenxing, YE Shiyun, TAN Hong, et al. An overview of influences of AC-DC hybrid system on AC grid protection[J]. Power System and Clean Energy, 2017, 33 (12): 41- 47. | |
10 |
宋国兵, 张宇轩, 张晨浩, 等. 换流站传递特性及其对交直流电网保护影响[J]. 清华大学学报(自然科学版), 2021, 61 (5): 465- 477.
DOI |
SONG Guobing, ZHANG Yuxuan, ZHANG Chenhao, et al. Converter station transmission characteristics for protecting hybrid AC/DC power grids[J]. Journal of Tsinghua University (Science and Technology), 2021, 61 (5): 465- 477.
DOI |
|
11 |
雷虹云, 于占勋, 赵强, 等. 高压直流输电换相失败对交流线路保护的影响 (二)直流换相失败瞬态特征分析及对交流线路保护的影响[J]. 电力系统保护与控制, 2011, 39 (24): 65- 71.
DOI |
LEI Hongyun, YU Zhanxun, ZHAO Qiang, et al. Study on influence of HVDC commutation failure on AC line protection part two: analysis of fault transient response characteristics and influence of HVDC commutation failure on AC line protections[J]. Power System Protection and Control, 2011, 39 (24): 65- 71.
DOI |
|
12 |
申洪明, 黄少锋, 费彬. HVDC换相失败暂态特性及其对差动保护的影响分析和对策[J]. 电力自动化设备, 2015, 35 (4): 109- 114, 120.
DOI |
SHEN Hongming, HUANG Shaofeng, FEI Bin. Transient characteristic of HVDC system during commutation failure, its effect on differential protection and countermeasures[J]. Electric Power Automation Equipment, 2015, 35 (4): 109- 114, 120.
DOI |
|
13 |
王栋, 高厚磊, 李文琳, 等. 方向纵联保护对LCC-HVDC逆变侧交流线路的适应性分析[J]. 电力系统保护与控制, 2018, 46 (18): 33- 40.
DOI |
WANG Dong, GAO Houlei, LI Wenlin, et al. Adaptability analysis of directional pilot protection for AC transmission lines connected to LCC-HVDC inverter station[J]. Power System Protection and Control, 2018, 46 (18): 33- 40.
DOI |
|
14 |
段建东, 李浩, 雷阳, 等. 利用同步挤压小波变换的高压交直流混联系统交流线路暂态方向保护[J]. 中国电机工程学报, 2019, 39 (13): 3833- 3842.
DOI |
DUAN Jiandong, LI Hao, LEI Yang, et al. Transient-based directional protection using synchrosqueezing wavelet transforms for AC transmission lines in HVAC/DC hybrid system[J]. Proceedings of the CSEE, 2019, 39 (13): 3833- 3842.
DOI |
|
15 | 戴志辉, 潘星宇, 赵中秋, 等. 不受直流换相失败影响的交流故障分量差动保护[J]. 高电压技术, 2022, 48 (4): 1422- 1432. |
DAI Zhihui, PAN Xingyu, ZHAO Zhongqiu, et al. AC superimposed-current differential protection immune to DC commutation failures[J]. High Voltage Engineering, 2022, 48 (4): 1422- 1432. | |
16 |
张健康, 索南加乐, 何方明, 等. 交直流混联电网工频变化量距离保护动作特性分析[J]. 电力系统自动化, 2013, 37 (4): 98- 103.
DOI |
ZHANG Jiankang, SUONAN Jiale, HE Fangming, et al. Performance analysis of distance protection based on industrial frequency variation applied to AC-DC hybrid power grid[J]. Automation of Electric Power Systems, 2013, 37 (4): 98- 103.
DOI |
|
17 |
张璞, 王钢, 李海锋. 直流馈入下的输电线路距离保护动作特性分析[J]. 电力系统自动化, 2012, 36 (6): 56- 62.
DOI |
ZHANG Pu, WANG Gang, LI Haifeng. Performance of distance protection for transmission lines in an HVDC/AC interconnected power system[J]. Automation of Electric Power Systems, 2012, 36 (6): 56- 62.
DOI |
|
18 |
费彬, 黄少锋, 申洪明. 交直流互联系统对距离保护的影响分析及对策[J]. 电力自动化设备, 2015, 35 (8): 15- 21.
DOI |
FEI Bin, HUANG Shaofeng, SHEN Hongming. Impact of AC-DC interconnected system on distance protection and countermeasure[J]. Electric Power Automation Equipment, 2015, 35 (8): 15- 21.
DOI |
|
19 |
王增超, 郑俊超, 曾耿晖, 等. 基于高压直流换流站站域信息的交流线路距离保护方法[J]. 电力系统保护与控制, 2019, 47 (1): 101- 107.
DOI |
WANG Zengchao, ZHENG Junchao, ZENG Genghui, et al. A distance protection method for AC transmission lines based on substation area information in HVDC convertor station[J]. Power System Protection and Control, 2019, 47 (1): 101- 107.
DOI |
|
20 |
罗瑞, 樊艳芳, 刘群杰. 基于时域的交直流混联系统抗过渡电阻的单相接地距离保护研究[J]. 电力系统及其自动化学报, 2019, 31 (12): 123- 129.
DOI |
LUO Rui, FAN Yanfang, LIU Qunjie. Research on anti-transition resistance single-phase ground distance protection of AC-DC hybrid power system based on time-domain[J]. Proceedings of the CSU-EPSA, 2019, 31 (12): 123- 129.
DOI |
|
21 | 刘建勋, 李凤婷. 直流等值工频电流对距离保护Ⅱ段的影响及应对措施[J]. 安徽大学学报(自然科学版), 2021, 45 (5): 64- 71. |
LIU Jianxun, LI Fengting. The influence of DC equivalent power frequency current on the Ⅱ section of distance protection and its countermeasure[J]. Journal of Anhui University (Natural Science Edition), 2021, 45 (5): 64- 71. | |
22 |
任萱, 王宾, 俞斌, 等. LCC-HVDC逆变侧换流站近区交流线路高阻接地故障保护[J]. 电力系统自动化, 2021, 45 (23): 162- 169.
DOI |
REN Xuan, WANG Bin, YU Bin, et al. High resistance grounding fault protection of AC line near converter station at inverter side of LCC-HVDC[J]. Automation of Electric Power Systems, 2021, 45 (23): 162- 169.
DOI |
|
23 | 张保会, 尹项根. 电力系统继电保护[M]. 2版. 北京: 中国电力出版社, 2010: 83–87. |
24 | 王彤, 孙奕, 裴林, 等. 考虑控制系统的LCC-HVDC直流电流暂态特性分析与交流短路电流近似解析方法[J]. 中国电机工程学报, 2022, 42 (23): 8509- 8523. |
WANG Tong, SUN Yi, PEI Lin, et al. Analysis of DC current transient characteristics of LCC-HVDC considering control system and approximate analytical method of AC short-circuit current[J]. Proceedings of the CSEE, 2022, 42 (23): 8509- 8523. | |
25 |
郑俊超, 文明浩, 秦瑜, 等. 具备故障选极能力的高压直流输电线路差动保护新原理[J]. 中国电机工程学报, 2018, 38 (15): 4350- 4358, 4635.
DOI |
ZHENG Junchao, WEN Minghao, QIN Yu, et al. A novel differential protection scheme with fault line selection capability for HVDC transmission line[J]. Proceedings of the CSEE, 2018, 38 (15): 4350- 4358, 4635.
DOI |
[1] | 张博, 王聪博, 詹荣荣, 余越. 计及控保协同的自适应电流差动保护方法[J]. 中国电力, 2025, 58(2): 1-8. |
[2] | 苏梓铭, 彭勇, 刘凯, 刘庭, 肖宾, 吴田, 唐盼. 1 000 kV与500 kV交流同塔四回线路带电作业电场防护仿真计算分析[J]. 中国电力, 2014, 47(2): 78-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||