中国电力 ›› 2023, Vol. 56 ›› Issue (6): 158-166,175.DOI: 10.11930/j.issn.1004-9649.202203070

• 新能源 • 上一篇    下一篇

基于K-means和BPNN的风机状态识别

杨晓峰1, 方逸航2, 赵鹏臻2, 王承民2, 谢宁2   

  1. 1. 龙源电力集团(上海)风力发电有限公司,上海 200122;
    2. 上海交通大学 电子信息与电气工程学院,上海 200240
  • 收稿日期:2022-03-24 修回日期:2023-05-06 发布日期:2023-07-04
  • 作者简介:杨晓峰(1992—),男,助理工程师,从事风力发电运营维护,E-mail:12023643@chnenergy.com.cn;方逸航(1998—),男,硕士研究生,从事大数据技术在电力系统中应用研究,E-mail:fwl126126@126.com;赵鹏臻(1998—),男,硕士研究生,从事大数据技术在电力系统中应用研究,E-mail:809563642@qq.com;王承民(1970—),男,博士,教授,从事电力系统安全稳定分析、电力系统经济运行、电网规划和电力市场等研究,E-mail:wangchengmin@sjtu.edu.cn;谢宁(1973—),女,通信作者,博士,副教授,从事电力系统安全稳定分析、电力系统经济运行、电网规划和智能电网等研究,E-mail:xiening@sjtu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(城市综合能源智慧物联管控技术研究及应用示范, 2020YFB2104500)。

State Recognition of Wind Turbines Based on K-means and BPNN

YANG Xiaofeng1, FANG Yihang2, ZHAO Pengzhen2, WANG Chengmin2, XIE Ning2   

  1. 1. Longyuan Power Group (Shanghai) Wind Power Co., Ltd., Shanghai 200122, China;
    2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2022-03-24 Revised:2023-05-06 Published:2023-07-04
  • Supported by:
    This work is supported by National Key Research and Development Program of China(Research and Application Demonstration of Intelligent IOT Control Technology for Urban Comprehensive Energy, No.2020YFB2104500).

摘要: 为实现“双碳”目标,必须大力发展风力发电技术。而随着电网规模越来越大,运行越来越复杂,对风机等电力设备的状态实时检测和精确评估也成为一个越来越重要的问题。随着大数据技术的发展以及电力设备数据监测技术的完善使电力设备状态监测使用机器学习等数据驱动技术成为了可能。与传统方法相比,该方法不依赖于准确的经验阈值和定量模型,对数据海量化和复杂化的情况具有更强的适应能力。因此,分别以无监督(K-means)和有监督(BP神经网络)的机器学习方法对风机状态进行识别,并探究对原始数据采用降维算法后风机状态识别的准确性及计算效率的变化。结果显示:2种机器学习方法在风机状态识别中的应用均具备有效性,而降维方法在有限的精度损失下较为明显地提高了计算效率。

关键词: 风机状态识别, 非机理性建模, 机器学习, 神经网络, 降维

Abstract: In order to achieve the goal of “double carbon”, the development of wind power generation technology is essential. At the same time, with the increasing complexity of power grid, the real-time detection and accurate evaluation of the state of wind turbines and other power equipment are becoming increasingly important. In recent years, the development of big data technology and the improvement of power equipment data monitoring technology makes possible the application of big data technology in power equipment state recognition. Compared with the conventional methods, the above-mentioned methods are independent of accurate empirical thresholds or quantitative models, and have better adaptability to the rapid increase and variability of data. Thus, this paper applies the unsupervised (K-means) and supervised (BPNN) machine learning methods to state recognition of wind turbines, while exploring the variation of accuracy and computational efficiency after the application of dimensionality reduction methods. The results show that both machine learning methods are effective in state recognition of wind turbines, while the dimensionality reduction method can effectively improve the computational efficiency with limited accuracy loss.

Key words: state recognition of wind turbine, non-mechanstic modeling, machine learning, neural network, dimensionality reduction