[1] 刘文君, 董明, 徐元孚, 等. 电力设备运行状态大数据标签体系与关键技术[J]. 中国电力, 2022, 55(1): 126–132 LIU Wenjun, DONG Ming, XU Yuanfu, et al. Structure and key technologies of big data labeling system for power equipment operation status[J]. Electric Power, 2022, 55(1): 126–132 [2] 李清义. 风力发电技术基础[M]. 中国电力出版社, 2020. [3] 李俊卿, 胡晓东, 马阳硕, 等. 基于合作博弈和区间划分的风电机组状态评价[J]. 智慧电力, 2022, 50(1): 7–13 LI Junqing, HU Xiaodong, MA Yangshuo, et al. State assessment of wind turbines based on cooperative game and interval partition[J]. Smart Power, 2022, 50(1): 7–13 [4] 王楠, 孙善武. 基于半监督聚类分析的无人机故障识别[J]. 计算机科学, 2019, 46(B06): 192–195 WANG Nan, SUN Shanwu. UAV fault recognition based on semi-supervised clustering[J]. Computer Science, 2019, 46(B06): 192–195 [5] 王浙超, 曾九孙, 谢磊, 等. 基于去噪自编码器的故障隔离与识别方法[J]. 信息与控制, 2021, 50(6): 641–650 WANG Zhechao, ZENG Jiusun, XIE Lei, et al. Fault isolation and identification method based on denoising autoencoder[J]. Information and Control, 2021, 50(6): 641–650 [6] LE Q V. Building high-level features using large scale unsupervised learning[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada. IEEE, 2013: 8595–8598. [7] 易京. 基于深度收缩自编码网络的机械设备故障诊断研究[D]. 北京: 北京邮电大学, 2019. YI Jing. Research on mechanical equipment fault diagnosis based on deep shrinkage self-coding network[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. [8] 曲岳晗, 赵洪山, 马利波, 等. 多深度神经网络综合的电力变压器故障识别方法[J]. 中国电机工程学报, 2021, 41(23): 8223–8230 QU Yuehan, ZHAO Hongshan, MA Libo, et al. Multi-depth neural network synthesis method for power transformer fault identification[J]. Proceedings of the CSEE, 2021, 41(23): 8223–8230 [9] 夏添梁, 张玉敏, 杨明, 等. 联合长短期记忆神经网络和粒子滤波的配电网预测辅助鲁棒状态估计方法[J]. 高电压技术, 2022, 48(4): 1343–1355 XIA Tianliang, ZHANG Yumin, YANG Ming, et al. Robust forecasting-aided state estimation method of distribution network based on long-short term memory neural network and particle filter[J]. High Voltage Engineering, 2022, 48(4): 1343–1355 [10] 张鑫淼. 基于SCADA数据的风电机组性能分析及健康状态评估[D]. 北京: 华北电力大学(北京), 2017. ZHANG Xinmiao. Performance analysis and health status evaluation of wind turbine based on SCADA data[D]. Beijing: North China Electric Power University, 2017. [11] 李重桂, 李录平, 刘瑞, 等. 风电机组智能状态评估与故障预测研究进展[J]. 电站系统工程, 2020, 36(4): 1–6, 11 LI Chonggui, LI Luping, LIU Rui, et al. Review on research progress of wind turbine intelligent state assessment and fault prediction[J]. Power System Engineering, 2020, 36(4): 1–6, 11 [12] 段震清. 基于大数据分析的风电机组运行状态评估及故障诊断[D]. 太原: 山西大学, 2018. DUAN Zhenqing. Wind turbine operation state evaluation and fault diagnosis based on big data analysis[D]. Taiyuan: Shanxi University, 2018. [13] 刘海涛, 陈俊, 黄迪, 等. 外转子风机轴向振动及故障机理研究[J]. 振动与冲击, 2022, 41(6): 271–280 LIU Haitao, CHEN Jun, HUANG Di, et al. On the axial vibration and the failure of outer-rotor fans[J]. Journal of Vibration and Shock, 2022, 41(6): 271–280 [14] 邹宜金, 连应华, 黄新宇, 等. 基于声纹的高泛化性风机叶片异常检测方法研究[J]. 电子科技大学学报, 2021, 50(5): 795–800 ZOU Yijin, LIAN Yinghua, HUANG Xinyu, et al. High generalization in anomaly detection of wind turbine generator based on voiceprint[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(5): 795–800 [15] ZAHER A, MCARTHUR S D J, INFIELD D G, et al. Online wind turbine fault detection through automated SCADA data analysis[J]. Wind Energy, 2009, 12(6): 574–593. [16] LI J, LEI X, LI H, et al. Normal behavior models for the condition assessment of wind turbine generator systems[J]. Electric Power Components and Systems, 2014, 42(11): 1201–1212. [17] 刘军, 汪继勇. 基于风电机组健康状态的风电场功率分配研究[J]. 电力系统保护与控制, 2020, 48(20): 106–113 LIU Jun, WANG Jiyong. Research on power distribution of a wind farm based on the healthy state of wind turbines[J]. Power System Protection and Control, 2020, 48(20): 106–113 [18] 肖桂雨, 向健平, 凌永志, 等. 基于小波神经网络的风力发电机故障预测方法[J]. 电力科学与技术学报, 2019, 34(2): 195–202 XIAO Guiyu, XIANG Jianping, LING Yongzhi, et al. Prediction of wind turbine faults based on wavelet neural networks[J]. Journal of Electric Power Science and Technology, 2019, 34(2): 195–202 [19] 向玲, 王朋鹤, 李京蓄. 基于CNN-LSTM的风电机组异常状态检测[J]. 振动与冲击, 2021, 40(22): 11–17 XIANG Ling, WANG Penghe, LI Jingxu. Abnormal state detection of wind turbines based on CNN-LSTM[J]. Journal of Vibration and Shock, 2021, 40(22): 11–17 [20] 李振恩, 张新燕, 胡威, 等. 基于健康指数的风电机组高速轴轴承状态评估与预测[J]. 太阳能学报, 2021, 42(10): 290–297 LI Zhen'en, ZHANG Xinyan, HU Wei, et al. State accessment and prediction of wind turbine high speed shaft bearing based on health index[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 290–297 [21] 雍彬, 陈进, 张方红, 等. 基于门控循环网络融合多源数据的风电齿轮箱状态预警方法[J]. 太阳能学报, 2021, 42(8): 421–425 YONG Bin, CHEN Jin, ZHANG Fanghong, et al. State warning of wind turbine gearbox based on gated recurrent unit network fusing multi-source data[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 421–425 [22] 杨茂, 张强. 基于相关向量机的风电功率实时预测研究[J]. 中国电力, 2016, 49(8): 64–68 YANGMao, ZHANG Qiang. Real time prediction of wind power based on relevance vector machine[J]. Electric Power, 2016, 49(8): 64–68 [23] 董兴辉, 张鑫淼, 郑凯, 等. 基于组合赋权和云模型的风电机组健康状态评估[J]. 太阳能学报, 2018, 39(8): 2139–2146 DONG Xinghui, ZHANG Xinmiao, ZHENG Kai, et al. Health status assessment of wind turbine based on combination weighting and cloud model[J]. Acta Energiae Solaris Sinica, 2018, 39(8): 2139–2146 [24] 江顺辉, 方瑞明, 尚荣艳, 等. 采用动态劣化度的风电机组运行状态实时评估[J]. 华侨大学学报(自然科学版), 2018, 39(1): 86–91 JIANG Shunhui, FANG Ruiming, SHANG Rongyan, et al. Real-time wind turbine operating assessment using dynamic inferior degree[J]. Journal of Huaqiao University (Natural Science), 2018, 39(1): 86–91 [25] 孙海蓉, 王皓茹, 王瑞珈, 等. 基于云模型的风电机组运行状态评价[J]. 电力科学与工程, 2020, 36(8): 57–62 SUN Hairong, WANG Haoru, WANG Ruijia, et al. Wind turbine operation status evaluation based on cloud model[J]. Electric Power Science and Engineering, 2020, 36(8): 57–62
|