中国电力 ›› 2024, Vol. 57 ›› Issue (4): 200-210.DOI: 10.11930/j.issn.1004-9649.202311078

• 电网 • 上一篇    下一篇

基于不确定参数的变电站碳储量预估方法

陈巳阳2(), 韩利1, 方济中1, 丁五行3(), 成诚2, 李文2, 张源2, 钱勇1   

  1. 1. 国网宁夏电力有限公司电力科学研究院,宁夏 银川 750011
    2. 国网宁夏电力有限公司超高压公司,宁夏 银川 750001
    3. 泰普联合科技开发(北京)有限公司,北京 100096
  • 收稿日期:2023-11-16 出版日期:2024-04-28 发布日期:2024-04-26
  • 作者简介:陈巳阳(1986—),男,高级工程师,从事电气检测及变电运维研究,E-mail:25282878@qq.com
    丁五行(1971—),男,通信作者,工程师,从事电气运维设备与仪器仪表研究,E-mail:546367234@qq.com
  • 基金资助:
    国网宁夏电力有限公司科技项目(522DK220010)。

Prediction Method for Carbon Storage in Substation Based on Uncertain Parameters

Siyang CHEN2(), Li HAN1, Jizhong FANG1, Wuhang DING3(), Cheng CHENG2, Wen LI2, Yuan ZHANG2, Yong QIAN1   

  1. 1. Electric Power Scientific Research Institute of State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750011, China
    2. Ultrahigh Voltage Company of State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750001, China
    3. T & P Union (Beijing) Co., Ltd., Beijing 100096, China
  • Received:2023-11-16 Online:2024-04-28 Published:2024-04-26
  • Supported by:
    This work is supported by the Science and Technology Project of State Grid Ningxia Electric Power Co., Ltd. (No.522DK220010)

摘要:

设备资产运维精益管理系统(power production management system,PMS)SF6气体量数据不全且误差较大,无法为电网企业核算碳储量以及实现待建变电站碳规划提供基础数据。针对上述情况,研究了计及母线和断路器的变电站碳储量核算方法,并结合宁夏电网现场实测数据,通过MIC法筛选神经网络输入参数,构建了6输入参数的GA-BP、PSO-BP、HPO-BP神经网络模型,结果表明HPO-BP神经网络模型的评估指标及预估结果相对误差(6.28%)均优于其余2种神经网络模型,可以准确核算断路器SF6气体量。针对参数不确定情况,根据PCCs法分析不同参数之间的线性关系,构建了3输入参数的HPO-BP神经网络模型,预估结果相对误差为9.72%。通过遍历输出方式,在参数不确定情况下输出多组断路器SF6气体量预估数据,利用求和累积方法获取变电站总SF6气体量,并量化为变电站碳储量,从而为电网企业实现“双碳”目标提供数据支撑。

关键词: SF6气体量, 碳储量, 神经网络模型, PSO, 不确定参数

Abstract:

The SF6 gas volume data from the PMS system is incomplete and contains significant errors, rendering it inadequate for power grid enterprises to calculate carbon reserves and formulate carbon planning for future substations. To address this problem, this paper studies the carbon storage accounting method for substations, taking into account buses and circuit breakers. The input parameters of the neural network are selected using the MIC method based on the field measured data in Ningxia grid, and three neural network models (GA-BP, PSO-BP, and HPO-BP) with six input parameters are developed. The verification results indicate that the HPO-BP neural network model outperforms the other two models in evaluation index and prediction results with a relative error of 6.28%, and it can accurately calculate the SF6 gas volume of circuit breakers. Additionally, considering the parameter uncertainties, the linear relationship between different parameters is analyzed using the PCCs method, and a three-input-parameter HPO-BP neural network model is constructed, yielding a relative error of 7.69% for the prediction results. Concurrently, the ergodic output mode is examined to generate estimated SF6 gas volume data for multiple groups of circuit breakers under uncertain parameter conditions. The total SF6 gas volume of the substation is determined using the cumulative sum method, consequently quantifying the total carbon storage of the substation, thereby offering data support for power grid enterprises to accomplish the objective of "double carbon".

Key words: SF6 gas volume, carbon storage, neural network model, PSO, uncertain parameters