中国电力 ›› 2024, Vol. 57 ›› Issue (12): 17-29.DOI: 10.11930/j.issn.1004-9649.202311050
李丹1(), 梁云嫣1(
), 缪书唯2, 方泽仁1,2, 胡越1,2, 贺帅2,3
收稿日期:
2023-11-13
出版日期:
2024-12-28
发布日期:
2024-12-27
作者简介:
李丹(1980—),女,博士,副教授,从事负荷和新能源功率预测、电力系统不确定性分析、电力系统优化运行研究,E-mail:lucy2140@163.com基金资助:
Dan LI1(), Yunyan LIANG1(
), Shuwei MIAO2, Zeren FANG1,2, Yue HU1,2, Shuai HE2,3
Received:
2023-11-13
Online:
2024-12-28
Published:
2024-12-27
Supported by:
摘要:
大量出力不确定的风电场并入电网会带来运行隐患和不可控风险,基于变分自编码器的场景生成模型方法能生成确定性场景集合以描述风电出力的不确定性。针对多风电场出力复杂的时空相关性以及在传统变分自编码器模型训练过程中可能存在的“KL坍缩”等问题,提出一种基于高斯混合聚类和改进条件变分自编码器的多风电场时空功率日场景生成方法。通过引入二维卷积技术提取时空相关性进行降维,并采用最大化最小夹角独立正则化技术,强化隐特征的独立性;采用超球面分布替代高斯分布,避免模型出现“KL坍缩”,提高模型场景生成训练的稳定性和准确性;另外,进一步考虑多风电场功率日场景的多样性和灵活性,引入高斯混合聚类技术,使模型可根据特定的条件标签生成具有差异化特征的确定性场景集。实际算例的结果表明,相较于常见方法,所提方法累积概率分布误差下降了17%~71%,时空相关性平均误差分别下降了85%~97%和55%~91%,且能精准生成不同风况类别占比的多风电场功率日场景集,提高了场景生成的多样性和灵活性。
李丹, 梁云嫣, 缪书唯, 方泽仁, 胡越, 贺帅. 基于高斯混合聚类和改进条件变分自编码的多风电场功率日场景生成方法[J]. 中国电力, 2024, 57(12): 17-29.
Dan LI, Yunyan LIANG, Shuwei MIAO, Zeren FANG, Yue HU, Shuai HE. Daily Power Scenario Generation Method for Multiple Wind Farms Based on Gaussian Mixture Clustering and Improved Conditional Variational Autoencoder[J]. Electric Power, 2024, 57(12): 17-29.
模型 | 参数设置明细 | |||
VAE | N=433; dm=24×18; dz=100; E=103 | p(Z)~N(0,1); | ||
GAN | ||||
CVAE | K=3;p(Z)~N(0,1) | |||
CGAN | K=3 | |||
vMF-CVAE | K=3;p(Z)~vMF(κ);κ=105 | |||
1D-GMM-ICVAE | K=3;p(Z)~vMF(κ); κ=105;λ=100 | |||
2D-GMM-ICVAE | K=3;p(Z)~vMF(κ); κ=105; H=150(3×2);λ=100 |
表 1 各方法的超参数设置
Table 1 Hyperparameter settings of methods
模型 | 参数设置明细 | |||
VAE | N=433; dm=24×18; dz=100; E=103 | p(Z)~N(0,1); | ||
GAN | ||||
CVAE | K=3;p(Z)~N(0,1) | |||
CGAN | K=3 | |||
vMF-CVAE | K=3;p(Z)~vMF(κ);κ=105 | |||
1D-GMM-ICVAE | K=3;p(Z)~vMF(κ); κ=105;λ=100 | |||
2D-GMM-ICVAE | K=3;p(Z)~vMF(κ); κ=105; H=150(3×2);λ=100 |
聚类 方式 | EMAAP | 隐特征 平均相 关系数 | 时/空相关系数的 ERMS | ERMS-CDF | ||||||||||||
数值/ % | Ip/ 百分比 | 数值 | Ip/% | 数值 | Ip/% | 数值/ MW | Ip/ % | |||||||||
GMM 聚类 | 6.10 | 0 | 0.17 | 0 | 0.02/0.09 | 0/0 | 0.13 | 0 | ||||||||
月份 | 13.69 | 7.59 | 0.37 | 53.38 | 0.13/0.23 | 86.40/60.79 | 0.25 | 46.80 | ||||||||
四季 | 11.92 | 5.82 | 0.35 | 50.62 | 0.11/0.19 | 84.64/52.91 | 0.23 | 40.89 | ||||||||
多/少 风季 | 11.09 | 4.99 | 0.28 | 39.15 | 0.07/0.34 | 80.23/75.82 | 0.15 | 11.92 | ||||||||
不分类 | 14.97 | 8.87 | 0.43 | 59.95 | 0.24/0.98 | 93.03/90.87 | 0.30 | 55.81 |
表 2 不同聚类方式下生成场景的评价指标对比
Table 2 Evaluation indexes of generated scenarios in different clustering ways
聚类 方式 | EMAAP | 隐特征 平均相 关系数 | 时/空相关系数的 ERMS | ERMS-CDF | ||||||||||||
数值/ % | Ip/ 百分比 | 数值 | Ip/% | 数值 | Ip/% | 数值/ MW | Ip/ % | |||||||||
GMM 聚类 | 6.10 | 0 | 0.17 | 0 | 0.02/0.09 | 0/0 | 0.13 | 0 | ||||||||
月份 | 13.69 | 7.59 | 0.37 | 53.38 | 0.13/0.23 | 86.40/60.79 | 0.25 | 46.80 | ||||||||
四季 | 11.92 | 5.82 | 0.35 | 50.62 | 0.11/0.19 | 84.64/52.91 | 0.23 | 40.89 | ||||||||
多/少 风季 | 11.09 | 4.99 | 0.28 | 39.15 | 0.07/0.34 | 80.23/75.82 | 0.15 | 11.92 | ||||||||
不分类 | 14.97 | 8.87 | 0.43 | 59.95 | 0.24/0.98 | 93.03/90.87 | 0.30 | 55.81 |
模型 | EMAAP | 隐特征平均相关系数 | 时空相关系数的ERMS | ERMS-CDF | ||||||||||||||||||||||||||||||||||||
全部 | 小风 日 | 中风 日 | 大风 日 | 全部 | 小风 日 | 中风 日 | 大风 日 | 全部 | 小风日 | 中风日 | 大风日 | 全部 | 小风 日 | 中风 日 | 大风 日 | |||||||||||||||||||||||||
值/ % | Ip/ 百分比 | 值 | Ip/ % | 值 | Ip/ % | 值/ MW | Ip/ % | |||||||||||||||||||||||||||||||||
2D-GMM- ICVAE | 6.10 | 0 | 6.07 | 5.85 | 6.42 | 0.17 | 0 | 0.15 | 0.15 | 0.21 | 0.02/0.09 | 0 | 0.02/0.09 | 0.01/0.07 | 0.03/0.12 | 0.13 | 0 | 0.13 | 0.12 | 0.15 | ||||||||||||||||||||
1D-GMM- ICVAE | 6.90 | 0.80 | 6.87 | 6.53 | 7.12 | 0.23 | 25 | 0.22 | 0.19 | 0.24 | 0.11/0.20 | 85/55 | 0.11/0.19 | 0.10/0.17 | 0.14/0.22 | 0.16 | 17 | 0.15 | 0.14 | 0.20 | ||||||||||||||||||||
vMF-CVAE | 7.39 | 1.29 | 7.33 | 6.79 | 8.06 | 0.33 | 48 | 0.31 | 0.28 | 0.36 | 0.13/0.31 | 87/71 | 0.13/0.25 | 0.13/0.22 | 0.14/0.33 | 0.20 | 32 | 0.15 | 0.19 | 0.26 | ||||||||||||||||||||
CVAE | 12.82 | 6.72 | 12.63 | 11.49 | 13.67 | 0.51 | 66 | 0.50 | 0.48 | 0.54 | 0.22/0.43 | 92/79 | 0.22/0.42 | 0.21/0.39 | 0.23/0.43 | 0.28 | 52 | 0.24 | 0.24 | 0.34 | ||||||||||||||||||||
CGAN | 0.32/0.92 | 95/90 | 0.33 | 59 | \ | \ | \ | |||||||||||||||||||||||||||||||||
GAN | 0.50/0.93 | 97/90 | 0.46 | 71 | \ | \ | \ | |||||||||||||||||||||||||||||||||
VAE | 15.02 | 8.92 | 0.54 | 68 | 0.32/0.98 | 95/91 | 0.39 | 65 | \ | \ | \ |
表 3 不同方法下生成场景的评价指标对比
Table 3 Evaluation index comparisons of the scenes generated by different methods
模型 | EMAAP | 隐特征平均相关系数 | 时空相关系数的ERMS | ERMS-CDF | ||||||||||||||||||||||||||||||||||||
全部 | 小风 日 | 中风 日 | 大风 日 | 全部 | 小风 日 | 中风 日 | 大风 日 | 全部 | 小风日 | 中风日 | 大风日 | 全部 | 小风 日 | 中风 日 | 大风 日 | |||||||||||||||||||||||||
值/ % | Ip/ 百分比 | 值 | Ip/ % | 值 | Ip/ % | 值/ MW | Ip/ % | |||||||||||||||||||||||||||||||||
2D-GMM- ICVAE | 6.10 | 0 | 6.07 | 5.85 | 6.42 | 0.17 | 0 | 0.15 | 0.15 | 0.21 | 0.02/0.09 | 0 | 0.02/0.09 | 0.01/0.07 | 0.03/0.12 | 0.13 | 0 | 0.13 | 0.12 | 0.15 | ||||||||||||||||||||
1D-GMM- ICVAE | 6.90 | 0.80 | 6.87 | 6.53 | 7.12 | 0.23 | 25 | 0.22 | 0.19 | 0.24 | 0.11/0.20 | 85/55 | 0.11/0.19 | 0.10/0.17 | 0.14/0.22 | 0.16 | 17 | 0.15 | 0.14 | 0.20 | ||||||||||||||||||||
vMF-CVAE | 7.39 | 1.29 | 7.33 | 6.79 | 8.06 | 0.33 | 48 | 0.31 | 0.28 | 0.36 | 0.13/0.31 | 87/71 | 0.13/0.25 | 0.13/0.22 | 0.14/0.33 | 0.20 | 32 | 0.15 | 0.19 | 0.26 | ||||||||||||||||||||
CVAE | 12.82 | 6.72 | 12.63 | 11.49 | 13.67 | 0.51 | 66 | 0.50 | 0.48 | 0.54 | 0.22/0.43 | 92/79 | 0.22/0.42 | 0.21/0.39 | 0.23/0.43 | 0.28 | 52 | 0.24 | 0.24 | 0.34 | ||||||||||||||||||||
CGAN | 0.32/0.92 | 95/90 | 0.33 | 59 | \ | \ | \ | |||||||||||||||||||||||||||||||||
GAN | 0.50/0.93 | 97/90 | 0.46 | 71 | \ | \ | \ | |||||||||||||||||||||||||||||||||
VAE | 15.02 | 8.92 | 0.54 | 68 | 0.32/0.98 | 95/91 | 0.39 | 65 | \ | \ | \ |
1 | 徐询, 谢丽蓉, 梁武星, 等. 考虑风电预测误差时序性及风电可信度的双层优化模型[J]. 电工技术学报, 2023, 38 (6): 1620- 1632, 1661. |
XU Xun, XIE Lirong, LIANG Wuxing, et al. Bi-level optimization model considering time series characteristic of wind power forecast error and wind power reliability[J]. Transactions of China Electrotechnical Society, 2023, 38 (6): 1620- 1632, 1661. | |
2 | 国家能源局. 国家能源局发布2023年全国电力工业统计数据. (2023-12-20)[2024-08-20]. https://www.nea.gov.cn/2023-12/20/c_1310756286.htm. |
3 | 彭小圣, 熊磊, 文劲宇, 等. 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36 (23): 6315- 6326, 6596. |
PENG Xiaosheng, XIONG Lei, WEN Jinyu, et al. A summary of the state of the art for short-term and ultra-short-term wind power prediction of regions[J]. Proceedings of the CSEE, 2016, 36 (23): 6315- 6326, 6596. | |
4 |
黄大为, 张伟, 韩学山. 基于自适应风电功率场景选取的有功调度模型[J]. 电力系统自动化, 2013, 37 (19): 68- 73, 92.
DOI |
HUANG Dawei, ZHANG Wei, HAN Xueshan. Active power dispatch based on self-adaptive wind power scenario selection[J]. Automation of Electric Power Systems, 2013, 37 (19): 68- 73, 92.
DOI |
|
5 | 张宁, 康重庆. 风电出力分析中的相依概率性序列运算[J]. 清华大学学报(自然科学版), 2012, 52 (5): 704- 709. |
ZHANG Ning, KANG Chongqing. Dependent probabilistic sequence operations for wind power output analyses[J]. Journal of Tsinghua University (Science and Technology), 2012, 52 (5): 704- 709. | |
6 | 邹斌, 李冬. 基于有效容量分布的含风电场电力系统随机生产模拟[J]. 中国电机工程学报, 2012, 32 (7): 23- 31, 187. |
ZOU Bin, LI Dong. Power system probabilistic production simulation with wind generation based on available capacity distribution[J]. Proceedings of the CSEE, 2012, 32 (7): 23- 31, 187. | |
7 | 顾洁, 刘书琪, 胡玉, 等. 基于深度卷积生成对抗网络场景生成的间歇式分布式电源优化配置[J]. 电网技术, 2021, 45 (5): 1742- 1751. |
GU Jie, LIU Shuqi, HU Yu, et al. Optimal allocation of intermittent distributed generation based on deep convolutions generative adversarial network in scenario generation[J]. Power System Technology, 2021, 45 (5): 1742- 1751. | |
8 | 王新迎, 李烨, 董骁翀, 等. 基于变分自编码器的主动配电网多源-荷场景生成方法[J]. 电网技术, 2021, 45 (8): 2962- 2969. |
WANG Xinying, LI Ye, DONG Xiaochong, et al. Multi-source-load scenario generation of active distribution network based on variational autoencoder[J]. Power System Technology, 2021, 45 (8): 2962- 2969. | |
9 | 丁明, 宋晓皖, 孙磊, 等. 考虑时空相关性的多风电场出力场景生成与评价方法[J]. 电力自动化设备, 2019, 39 (10): 39- 47. |
DING Ming, SONG Xiaowan, SUN Lei, et al. Scenario generation and evaluation method of multiple wind farms output considering spatial-temporal correlation[J]. Electric Power Automation Equipment, 2019, 39 (10): 39- 47. | |
10 |
BILLINTON R, KARKI B, KARKI R, et al. Unit commitment risk analysis of wind integrated power systems[J]. IEEE Transactions on Power Systems, 2009, 24 (2): 930- 939.
DOI |
11 | 丁明, 鲍玉莹, 毕锐. 应用改进马尔科夫链的光伏出力时间序列模拟[J]. 电网技术, 2016, 40 (2): 459- 464. |
DING Ming, BAO Yuying, BI Rui. Simulation of PV output time series used improved Markov chain[J]. Power System Technology, 2016, 40 (2): 459- 464. | |
12 | 董骁翀. 基于数据驱动的可再生能源场景生成与约简方法研究[D]. 北京: 华北电力大学, 2020. |
DONG Xiaochong. Research on data-driven renewable energy scene generation and reduction method [D]. Beijing: North China Electric Power University, 2020. | |
13 |
李丹, 王奇, 缪书唯, 等. 基于张量SOM和VAE的多风电时空功率日场景生成[J]. 可再生能源, 2022, 40 (12): 1658- 1665.
DOI |
LI Dan, WANG Qi, MIAO Shuwei, et al. A daily scenario generation for spatio-temporal power of multi-wind power based on tensor SOM and VAE[J]. Renewable Energy Resources, 2022, 40 (12): 1658- 1665.
DOI |
|
14 |
彭雨筝, 李晓露, 李聪利, 等. 基于残差卷积自编码的风光荷场景生成方法[J]. 电力建设, 2021, 42 (8): 10- 17.
DOI |
PENG Yuzheng, LI Xiaolu, LI Congli, et al. Typical wind-PV-load scenario generation based on residual convolutional auto-encoders[J]. Electric Power Construction, 2021, 42 (8): 10- 17.
DOI |
|
15 | 刘德宝. 基于电动汽车充电负荷场景区间预测的孤岛型微电网鲁棒优化调度[D]. 吉林: 东北电力大学, 2021. |
LIU Debao. Robust optimal dispatch of islanded microgrid based on interval prediction of electric vehicle charging load scene[D]. Jilin: Northeast Electric Power University, 2021. | |
16 | 李旭霞, 张琳娜, 郑晓明, 等. 基于KL散度的储能电站分布鲁棒规划方法[J]. 太阳能学报, 2022, 43 (4): 46- 55. |
LI Xuxia, ZHANG Linna, ZHENG Xiaoming, et al. KL divergence-based distributionally robust planning method for energy storage plants[J]. Acta Energiae Solaris Sinica, 2022, 43 (4): 46- 55. | |
17 | DAVIDSON T R, FALORSI L, NICOLA D C. Hyperspherical variational auto-encoders[C]//34th Conference on Uncertainty in Artificial Intelligence, United States, 2018: 856–865. |
18 | XU J C, DURRETT G. Spherical latent spaces for stable variational autoencoders[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018: 4503–4513. |
19 | 李丹, 王奇, 杨保华, 等. 基于独立稀疏SAE的多风电场超短期功率预测[J]. 电力系统及其自动化学报, 2022, 34 (2): 23- 30. |
LI Dan, WANG Qi, YANG Baohua, et al. Ultra-short-term power prediction of multiple wind farms based on independent sparse SAE[J]. Proceedings of the CSU-EPSA, 2022, 34 (2): 23- 30. | |
20 | WANG Z N, XIANG C Q, ZOU W B, et al. MMA regularization: decorrelating weights of neural networks by maximizing the minimal angles[EB/OL]. (2006-06-05)[2024-08-20]. http://arxiv.org/abs/2006.06527v2. |
21 | 王守相, 陈海文, 李小平, 等. 风电和光伏随机场景生成的条件变分自动编码器方法[J]. 电网技术, 2018, 42 (6): 1860- 1869. |
WANG Shouxiang, CHEN Haiwen, LI Xiaoping, et al. Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J]. Power System Technology, 2018, 42 (6): 1860- 1869. | |
22 |
王磊, 张志勇, 曾维贵, 等. 基于数据场联合决策图改进的GMM聚类[J]. 系统工程与电子技术, 2022, 44 (9): 2743- 2751.
DOI |
WANG Lei, ZHANG Zhiyong, ZENG Weigui, et al. An improved GMM clustering based on data field and decision graph[J]. Systems Engineering and Electronics, 2022, 44 (9): 2743- 2751.
DOI |
|
23 |
KIM S, KIM H. A new metric of absolute percentage error for intermittent demand forecasts[J]. International Journal of Forecasting, 2016, 32 (3): 669- 679.
DOI |
24 | 黄越辉, 孙亚南, 李驰, 等. 基于条件生成对抗网络的多区域风电短期出力场景生成方法[J]. 电网技术, 2023, 47 (1): 63- 77. |
HUANG Yuehui, SUN Yanan, LI Chi, et al. Constructing method of short-term output scenarios for multi-regional wind power based on conditional generative adversarial network[J]. Power System Technology, 2023, 47 (1): 63- 77. |
[1] | 郑鹏, 韩鹏程, 王国栋, 娄颖. 中压配电线路断线高阻接地故障精细化诊断方法[J]. 中国电力, 2024, 57(4): 220-228. |
[2] | 张博智, 张茹, 焦东翔, 王龙宇, 周一凡, 周丽霞. 基于VMD-SAST的电能质量扰动分类识别方法[J]. 中国电力, 2024, 57(2): 34-40. |
[3] | 马海飞, 滕伟, 彭迪康, 柳亦兵, 靳涛. 基于DRS与改进Autogram的风电齿轮箱复合故障特征提取[J]. 中国电力, 2023, 56(10): 71-79. |
[4] | 胡京, 邓颖, 蒋兴良, 曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法[J]. 中国电力, 2022, 55(8): 135-142. |
[5] | 樊江川, 于昊正, 刘慧婷, 杨丽君, 安佳坤. 基于多分支门控残差卷积神经网络的短期电力负荷预测[J]. 中国电力, 2022, 55(11): 155-162,174. |
[6] | 黄冬梅, 王玥琦, 胡安铎, 孙锦中, 时帅, 孙园, 房岭锋. 融合多维度特征的绝缘子状态边缘识别方法[J]. 中国电力, 2022, 55(1): 133-141. |
[7] | 刘文慧, 徐遵义, 张旭冉, 张海燕. 基于互信息和PCA理论的湿法烟气脱硫工况特征提取方法[J]. 中国电力, 2020, 53(8): 158-163. |
[8] | 林女贵, 洪兰秀, 黄道姗, 易扬, 刘智煖, 徐启峰. 基于改进深度自编码网络的异常用电行为辨识[J]. 中国电力, 2020, 53(6): 18-26. |
[9] | 耿江海, 王平, 田姗. SF6气体泄漏光学检测图像特征提取方法研究[J]. 中国电力, 2014, 47(1): 8-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||