中国电力 ›› 2022, Vol. 55 ›› Issue (1): 133-141.DOI: 10.11930/j.issn.1004-9649.202011120

• 人工智能在新型电力系统中的应用 • 上一篇    下一篇

融合多维度特征的绝缘子状态边缘识别方法

黄冬梅1, 王玥琦2, 胡安铎1, 孙锦中1, 时帅2, 孙园3, 房岭锋4   

  1. 1. 上海电力大学 电子与信息工程学院, 上海 201306;
    2. 上海电力大学 电气工程学院, 上海 200090;
    3. 上海电力大学 数理学院, 上海 201306;
    4. 国家电网有限公司, 北京 100031
  • 收稿日期:2020-11-30 修回日期:2021-03-17 出版日期:2022-01-28 发布日期:2022-01-20
  • 作者简介:黄冬梅(1964-),女,博士,教授,博士生导师,从事海洋与电力时空信息技术研究,E-mail:dmhuang_dl@163.com;王玥琦(1997-),女,硕士研究生,从事智能电力巡检、绝缘子状态识别研究,E-mail:w18521019258@163.com;孙锦中(1981-),男,博士,通信作者,从事模式识别、边缘计算研究,E-mail:benima2001@sina.com
  • 基金资助:
    国家自然科学基金资助项目(41671431);上海市科委地方院校能力建设项目(20020500700)

An Edge Recognition Method for Insulator State Based on Multi-dimension Feature Fusion

HUANG Dongmei1, WANG Yueqi2, HU Anduo1, SUN Jinzhong1, SHI Shuai2, SUN Yuan3, FANG Lingfeng4   

  1. 1. College of Electronic and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China;
    2. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
    3. College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China;
    4. State Grid Corporation of China, Beijing 100031, China
  • Received:2020-11-30 Revised:2021-03-17 Online:2022-01-28 Published:2022-01-20
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.41671431), Local College Capacity Building Project of Shanghai Municipal Science and Technology Commission (No.20020500700)

摘要: 针对传统的绝缘子状态识别方法存在实时性差、特征提取能力不足的问题,基于边缘计算的思想,提出了一种融合多维度特征的绝缘子状态边缘识别方法。利用云边协同和边边联邦协同的联合技术手段,构建了绝缘子状态的边缘识别框架。设计了一种融合多维度特征提取的深度学习网络,该网络采用ResNet101作为主干特征提取网络,使用Inception模块构建数据池化层,嵌入压缩激励模块和卷积注意力模块,从不同维度对特征进行高效提取。采用包括正常和缺陷2种状态的数据集进行绝缘子状态边缘识别实验,平均识别准确率达到了99%。实验表明了融合多维度特征的绝缘子状态边缘识别方法的有效性。

关键词: 绝缘子图像, 特征提取, 残差神经网络, 边缘计算, 状态识别

Abstract: Traditional insulator state recognition methods have such problems as poor real-time performance and insufficient feature extraction ability. Based on the idea of edge computing, this paper proposes a method for recognizing the insulator state based on multi-dimension feature fusion. An edge recognition framework for insulator state is constructed using cloud edge collaboration and edge federation collaboration. And a deep learning network integrating multi-dimension feature extraction is designed, which, by using the ResNet101 as the main feature extraction network, uses the Inception module to build the data pooling layer, and embeds the compression incentive module and convolution attention module to extract features from different dimensions. An insulator state recognition experiment is conducted using the data set of normal and defect states, and the average recognition accuracy reaches 99%. The experimental results have proved the validity of the proposed method.

Key words: insulator image, feature extraction, residual neural network, edge computing, state recognition