中国电力 ›› 2022, Vol. 55 ›› Issue (1): 126-132.DOI: 10.11930/j.issn.1004-9649.202105034

• 人工智能在新型电力系统中的应用 • 上一篇    下一篇

电力设备运行状态大数据标签体系与关键技术

刘文君1, 董明1, 徐元孚2, 韩强2, 王鑫2, 许雷2, 杜明3   

  1. 1. 西安交通大学 电力设备电气绝缘国家重点实验室, 陕西 西安 710049;
    2. 国网天津市电力公司电力科学研究院, 天津 300384;
    3. 国网天津市电力公司, 天津 300143
  • 收稿日期:2021-05-08 修回日期:2021-09-14 出版日期:2022-01-28 发布日期:2022-01-20
  • 作者简介:刘文君(1997-),女,硕士研究生,从事电力设备状态监测与电力大数据分析研究,E-mail:490188310@qq.com;徐元孚(1964-),男,高级工程师,从事变电站监控运行分析及设备检修决策技术研究,E-mail:yuanfu.xu@tj.sgcc.com.cn
  • 基金资助:
    国家电网有限公司科技项目(GTJDK00 DWJS2000309)。

Structure and Key Technologies of Big Data Labeling System for Power Equipment Operation Status

LIU Wenjun1, DONG Ming1, XU Yuanfu2, HAN Qiang2, WANG Xin2, XU Lei2, DU Ming3   

  1. 1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;
    2. State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China;
    3. State Grid Tianjin Electric Power Company, Tianjin 300143, China
  • Received:2021-05-08 Revised:2021-09-14 Online:2022-01-28 Published:2022-01-20
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (NO.SGTJDK00 DWJS2000309)

摘要: 随着大数据分析技术在电网中的快速发展与深度应用,数据标签技术提供了一种新的数据整合思路。电力设备大数据标签以灵活的方式从海量、离散的数据中实现对有用数据的快速识别和提取,在帮助调控人员实现对电力设备情况作出多维判断的同时,为后续电力数据挖掘建模提供了依据。围绕电力设备基础信息、运行信息和状态信息3个维度,提出了一种多维度电力设备标签体系的构建方法,并通过聚类、故障概率计算、模糊推理3个层次丰富了数据标签的内涵,为实现电网监控智能化奠定基础。

关键词: 大数据分析, 电力设备, 运行状态, 数据标签

Abstract: With the rapid development and deep application of big data analysis technology in power grid, data label technology provides people with a new idea of data integration. Big data labels for power equipment can realize rapid identification and extraction of useful data from massive and discrete data in a flexible way, which not only contributes to make multidimensional judgments on power equipment for power grid operators, but also provides a basis for subsequent power data mining modeling. A multi-dimensional data labeling system for power equipment is proposed, which lays a foundation for realizing intelligent monitoring of power grid.

Key words: big data analysis, power equipment, running state, data label