[1] 金晨, 任大伟, 肖晋宇, 等. 支撑碳中和目标的电力系统源-网-储灵活性资源优化规划[J]. 中国电力, 2021, 54(8): 164–174 JIN Chen, REN Dawei, XIAO Jinyu, et al. Optimization planning on power system supply-grid-storage flexibility resource for supporting the “carbon neutrality” target of China[J]. Electric Power, 2021, 54(8): 164–174 [2] 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3): 1–11 ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China’s power system[J]. Electric Power, 2021, 54(3): 1–11 [3] 童光毅. 基于双碳目标的智慧能源体系构建[J]. 智慧电力, 2021, 49(5): 1-6. TONG Guangyi. Construction of smart energy system based on dual carbon goal[J]. Smart Power, 2021, 49(5): 1-6. [4] 李巍巍, 朱轲, 邓元实, 等. 温度对电缆附件界面缺陷处局放引发影响机制研究[J]. 中国电力, 2021, 54(11): 181–189 LI Weiwei, ZHU Ke, DENG Yuanshi, et al. Influence of temperature on initiation mechanism of partial discharge at the interface defects of cable accessories[J]. Electric Power, 2021, 54(11): 181–189 [5] 王雅妮, 张帅, 任品顺, 等. 不同温度下XLPE-SIR异质绝缘的交/直流电树枝及局部放电特性[J/OL]. 中国电机工程学报, 2022: 1–11. (2022-10-22).https://kns.cnki.net/kcms/detail/11.2107.TM.20220928.0959.002.html. WANG Yani, ZHANG Shuai, REN Pinshun, et al. AC/DC electrical tree and partial discharge characteristics of XLPE-SIR heterogeneous insulation at different temperatures[J/OL]. Proceedings of the CSEE, 2022: 1–11. (2022-10-22).https://kns.cnki.net/kcms/detail/11.2107.TM.20220928.0959.002.html. [6] 张冠军, 赵林, 周润东, 等. 硅橡胶复合绝缘子老化表征评估研究的现状与进展[J]. 高压电器, 2016, 52(4): 1–15 ZHANG Guanjun, ZHAO Lin, ZHOU Rundong, et al. Review on aging characterization and evaluation of silicon rubber composite insulator[J]. High Voltage Apparatus, 2016, 52(4): 1–15 [7] 高岩峰, 王家福, 梁曦东, 等. 交直流电晕对高温硫化硅橡胶性能的影响[J]. 中国电机工程学报, 2016, 36(1): 274–284 GAO Yanfeng, WANG Jiafu, LIANG Xidong, et al. Influence of AC and DC corona on high temperature vulcanized silicone rubber[J]. Proceedings of the CSEE, 2016, 36(1): 274–284 [8] KAMAND F Z, MEHMOOD B, GHUNEM R, et al. Self-healing silicones for outdoor high voltage insulation: mechanism, applications and measurements[J]. Energies, 2022, 15(5): 1677. [9] RYNDZIONEK R, SIENKIEWICZ Ł. Evolution of the HVDC link connecting offshore wind farms to onshore power systems[J]. Energies, 2020, 13(8): 1914. [10] 姜磊, 高景晖, 钟力生, 等. 远海漂浮式海上风电平台用动态海缆的发展[J]. 高压电器, 2022, 58(1): 1–11 JIANG Lei, GAO Jinghui, ZHONG Lisheng, et al. Development of dynamic submarine cable for offshore floating wind power platforms[J]. High Voltage Apparatus, 2022, 58(1): 1–11 [11] 樊艳艳, 李志辉, 魏浩. 湿热盐雾环境对硅橡胶老化性能的影响[J]. 橡胶工业, 2022, 69(10): 785–789 FAN Yanyan, LI Zhihui, WEI Hao. Effect of damp heat salt spray environment on aging property of silicone rubber[J]. China Rubber Industry, 2022, 69(10): 785–789 [12] 杨宇轩. 盐雾环境中输电线路绝缘子串交流闪络特性研究[D]. 武汉: 华中科技大学, 2018. YANG Yuxuan. Study on transmission line insulator string flash-over characteristics in salt fog environment[D]. Wuhan: Huazhong University of Science and Technology, 2018. [13] 李国倡, 王家兴, 魏艳慧, 等. 高压直流电缆附件XLPE/SIR材料特性及界面电荷积聚对电场分布的影响[J]. 电工技术学报, 2021, 36(14): 3081–3089 LI Guochang, WANG Jiaxing, WEI Yanhui, et al. Effect of material properties of XLPE/SIR and interface charge accumulation on electric field distribution of HVDC cable accessory[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3081–3089 [14] 田玉亮. 核壳结构功能纳米填料及其硅橡胶复合材料的制备和性能研究[D]. 常州: 常州大学, 2022. TIAN Yuliang. Preparation and properties of core-shell functional nanofillers and silicone rubber composites[D]. Changzhou: Changzhou University, 2022. [15] 褚丽君. 硅橡胶的官能化修饰及其复合材料的结构与性能研究[D]. 北京: 北京化工大学, 2022. CHU Lijun. Study on functional modification of silicone rubber and the structure andproperties of the composite[D]. Beijing: Beijing University of Chemical Technology, 2022. [16] 刘倩雨. 硅橡胶和热塑性聚氨酯的紫外及电子辐照效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. LIU Qianyu. Study on UV and electron irradiation effects of silicone rubber and thermoplastic polyurethane[D]. Harbin: Harbin Institute of Technology, 2021. [17] 毕茂强, 董扬, 陈曦, 等. 表面状态对硅橡胶电晕老化进程及特性的影响研究[J]. 中国材料进展, 2022, 41(6): 429–434 BI Maoqiang, DONG Yang, CHEN Xi, et al. Study on the effect of surface state on corona aging process and characteristics of silicone rubber[J]. Materials China, 2022, 41(6): 429–434 [18] 杨建军, 王明岩, 刘明亮, 等. 不同服役年限下动车组绝缘子表面憎水特性研究[J]. 绝缘材料, 2022, 55(1): 47–51 YANG Jianjun, WANG Mingyan, LIU Mingliang, et al. Surface hydrophobicity of insulator with different service years for electric multiple unit[J]. Insulating Materials, 2022, 55(1): 47–51 [19] 杨发. 覆冰环境硅橡胶憎水性丧失与恢复研究[D]. 重庆: 重庆大学, 2021. YANG Fa. Study on loss and recovery of hydrophobicity of silicone rubber in icing environment[D]. Chongqing: Chongqing University, 2021. [20] 周远翔, 张征辉, 张云霄, 等. 热-力联合老化对硅橡胶交联网络及力学和耐电特性的影响[J]. 电工技术学报, 2022, 37(17): 4474–4486 ZHOU Yuanxiang, ZHANG Zhenghui, ZHANG Yunxiao, et al. The effect of combined thermal-mechanical aging on the cross-linking network and mechanical and electrical properties of silicone rubber[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4474–4486 [21] 杨瑞宁, 窦鹏, 王瑞欣, 等. 苯基硅橡胶分子结构与耐高温性能关系的试验与模拟[J]. 合成橡胶工业, 2022, 45(6): 449–455 YANG Ruining, DOU Peng, WANG Ruixin, et al. Experiment and simulation of the relationship between molecular structure and high temperature resistance of phenyl silicone rubber[J]. China Synthetic Rubber Industry, 2022, 45(6): 449–455 [22] 王磊, 张玥, 孙全吉, 等. 双硫化体系耐高温硅橡胶的性能[J]. 航空材料学报, 2022, 42(5): 135–141 WANG Lei, ZHANG Yue, SUN Quanji, et al. Properties of heat-resistant silicone rubber prepared via a dual-vulcanizer system[J]. Journal of Aeronautical Materials, 2022, 42(5): 135–141 [23] SHEN W W, MU H B, ZHANG G J, et al. Identification of electron and hole trap based on isothermal surface potential decay model[J]. Journal of Applied Physics, 2013, 113(8): 083706. [24] 高宇, 王小芳, 李楠, 等. 聚合物绝缘材料载流子陷阱的表征方法及陷阱对绝缘击穿影响的研究进展[J]. 高电压技术, 2019, 45(7): 2219–2230 GAO Yu, WANG Xiaofang, LI Nan, et al. Characterization method for carrier trap and the effect on insulation breakdown within polymer insulating materials: a review[J]. High Voltage Engineering, 2019, 45(7): 2219–2230 [25] 廖昙倩, 吴帆, 刘涛元, 等. 纳米纤维掺杂对硅橡胶电学性能的影响[J]. 绝缘材料, 2022, 55(12): 38–45 LIAO Tanqian, WU Fan, LIU Taoyuan, et al. Effect of nanofiber doping on electrical properties of silicone rubber[J]. Insulating Materials, 2022, 55(12): 38–45 [26] 周晓慧, 吴新国, 周应学, 等. 改性二氧化硅对硅橡胶介电绝缘性能的影响[J]. 应用化工, 2022, 51(12): 3561–3565, 3569 ZHOU Xiaohui, WU Xinguo, ZHOU Yingxue, et al. The effect of modified silica on the dielectric insulation properties of silicon rubber[J]. Applied Chemical Industry, 2022, 51(12): 3561–3565, 3569 [27] 侯帅, 张逸凡, 赵远涛, 等. 脱气对525 kV交联聚乙烯绝缘直流电缆空间电荷特性的影响[J]. 南方电网技术, 2021, 15(12): 78–85 HOU Shuai, ZHANG Yifan, ZHAO Yuantao, et al. Effect of degassing on space charge properties of 525 kV XLPE insulated DC cable[J]. Southern Power System Technology, 2021, 15(12): 78–85 [28] 孙欣宇, 吴铮, 伍铭妍, 等. 基于小缺陷扰动模型中压电缆附件综合绝缘性能评价方法[J]. 南方电网技术, 2022, 16(8): 142–149 SUN Xinyu, WU Zheng, WU Mingyan, et al. Small defect disturbance model based comprehensive insulation performance evaluation method of medium voltage cable accessories[J]. Southern Power System Technology, 2022, 16(8): 142–149 [29] 刘庆珍, 黄昌硕. 基于FCBF特征选择和XGBoost原则的油纸绝缘介电响应特征量优选研究[J]. 电力系统保护与控制, 2022, 50(15): 50–59 LIU Qingzhen, HUANG Changshuo. Optimization of dielectric response characteristics of oil paper insulation based on FCBF feature selection and the XGBoost principle[J]. Power System Protection and Control, 2022, 50(15): 50–59
|