[1] 杨军伟, 杜露露, 刘夏, 等. 高风电渗透率下考虑需求侧管理策略的智能微电网调度方法[J]. 智慧电力, 2021, 49(3): 32–39, 110 YANG Junwei, DU Lulu, LIU Xia, et al. Dispatching method of smart microgrid considering demand-side management strategy under high wind power penetration rate[J]. Smart Power, 2021, 49(3): 32–39, 110 [2] 任勇, 曾鸣. 独立光储直流微网的稳定运行控制策略[J]. 电力系统保护与控制, 2021, 49(22): 75–86 REN Yong, ZENG Ming. Stable operation control strategy for an independent DC microgrid with photovoltaics and a storage system[J]. Power System Protection and Control, 2021, 49(22): 75–86 [3] 韩峰, 曾成碧, 苗虹. 计及EV与可再生能源的家庭微电网能源管理系统[J]. 电力科学与技术学报, 2021, 36(1): 79–86 HAN Feng, ZENG Chengbi, MIAO Hong. Study on the energy management system of an electric vehicle and renewable energy in home micro-grid[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 79–86 [4] 吴鸣, 熊雄, 季宇, 等. 微网群技术综述[J]. 储能科学与技术, 2019, 8(4): 621–628 WU Ming, XIONG Xiong, JI Yu, et al. Overview on multi-microgrid technologies[J]. Energy Storage Science and Technology, 2019, 8(4): 621–628 [5] 潘瑞媛, 唐忠, 史晨豪, 等. 基于主从博弈的多主体投资多微网系统优化配置[J]. 中国电力, 2022, 55(6): 65–73, 127 PAN Ruiyuan, TANG Zhong, SHI Chenhao, et al. Optimal configuration of multi-microgrid system with multi-agent joint investment based on stackelberg game[J]. Electric Power, 2022, 55(6): 65–73, 127 [6] 雷杨, 杨帆, 沈煜, 等. 基于一二次深度融合的多智能体FTU研究[J]. 电力系统保护与控制, 2022, 50(9): 152–162 LEI Yang, YANG Fan, SHEN Yu, et al. A multi-agent FTU based on deep-merging of primary and secondary equipment[J]. Power System Protection and Control, 2022, 50(9): 152–162 [7] 徐晓宁. 微网运行控制关键技术的研究[D]. 天津: 天津大学, 2017. XU Xiaoning. Studies on key technologies of microgrid operation control[D]. Tianjin: Tianjin University, 2017. [8] 马艺玮, 杨苹, 王月武, 等. 微电网典型特征及关键技术[J]. 电力系统自动化, 2015, 39(8): 168–175 MA Yiwei, YANG Ping, WANG Yuewu, et al. Typical characteristics and key technologies of microgrid[J]. Automation of Electric Power Systems, 2015, 39(8): 168–175 [9] 田培根, 肖曦, 丁若星, 等. 自治型微电网群多元复合储能系统容量配置方法[J]. 电力系统自动化, 2013, 37(1): 168–173 TIAN Peigen, XIAO Xi, DING Ruoxing, et al. A capacity configuring method of composite energy storage system in autonomous multi-microgrid[J]. Automation of Electric Power Systems, 2013, 37(1): 168–173 [10] 刘迎澍, 陈曦, 李斌, 等. 多微网系统关键技术综述[J]. 电网技术, 2020, 44(10): 3804–3820 LIU Yingshu, CHEN Xi, LI Bin, et al. State of art of the key technologies of multiple microgrids system[J]. Power System Technology, 2020, 44(10): 3804–3820 [11] 支娜, 肖曦, 田培根, 等. 微网群控制技术研究现状与展望[J]. 电力自动化设备, 2016, 36(4): 107–115 ZHI Na, XIAO Xi, TIAN Peigen, et al. Research and prospect of multi-microgrid control strategies[J]. Electric Power Automation Equipment, 2016, 36(4): 107–115 [12] 王程, 刘念. 基于交替方向乘子法的互联微电网系统分布式优化调度[J]. 电网技术, 2016, 40(9): 2675–2681 WANG Cheng, LIU Nian. Distributed optimal dispatching of interconnected microgrid system based on alternating direction method of multipliers[J]. Power System Technology, 2016, 40(9): 2675–2681 [13] 徐意婷, 艾芊. 基于全景理论的多微网聚合优化运行[J]. 电力系统保护与控制, 2015, 43(16): 50–56 XU Yiting, AI Qian. Optimal operation of multi-microgrid aggregation based on landscape theory[J]. Power System Protection and Control, 2015, 43(16): 50–56 [14] FATHI M, BEVRANI H. Statistical cooperative power dispatching in interconnected microgrids[J]. IEEE Transactions on Sustainable Energy, 2013, 4(3): 586–593. [15] 赵紫嫣, 崔双喜, 樊小朝, 等. 考虑经济环保效益的微网群多目标协调优化[J]. 可再生能源, 2019, 37(3): 372–378 ZHAO Ziyan, CUI Shuangxi, FAN Xiaochao, et al. Multi-objective coordination optimization of multi-microgrid considering economic and environmental benefits[J]. Renewable Energy Resources, 2019, 37(3): 372–378 [16] 杜炜, 窦迅, 王镇, 等. 考虑热电余量交易的微网群优化调度[J]. 电网技术, 2020, 44(10): 3777–3786 DU Wei, DOU Xun, WANG Zhen, et al. Optimal scheduling for microgrid clusters considering heat-electricity margin transaction[J]. Power System Technology, 2020, 44(10): 3777–3786 [17] 李云龙, 田书, 马亚光. 含多微网的主动配电网分层优化调度[J]. 电力系统及其自动化学报, 2020, 32(6): 88–93 LI Yunlong, TIAN Shu, MA Yaguang. Hierarchical optimal dispatching of active distribution network with multi-microgrid[J]. Proceedings of the CSU-EPSA, 2020, 32(6): 88–93 [18] 蓝达成, 崔双喜, 樊小朝, 等. 计及蓄电池寿命的微网群优化调度模型[J]. 昆明理工大学学报(自然科学版), 2021, 46(2): 72–81 LAN Dacheng, CUI Shuangxi, FAN Xiaochao, et al. Optimal scheduling model of multi-microgrid group considering battery life[J]. Journal of Kunming University of Science and Technology (Natural Sciences), 2021, 46(2): 72–81 [19] 彭元修, 杨谊华, 邱雄, 等. 基于滚动式ADMM算法微电网群调度研究[J]. 电力电子技术, 2018, 52(10): 38–41 PENG Yuanxiu, YANG Yihua, QIU Xiong, et al. Research on microgrid cluster scheduling based on rolling ADMM[J]. Power Electronics, 2018, 52(10): 38–41 [20] 李佩杰, 陆镛, 白晓清, 等. 基于交替方向乘子法的动态经济调度分散式优化[J]. 中国电机工程学报, 2015, 35(10): 2428–2435 LI Peijie, LU Yong, BAI Xiaoqing, et al. Decentralized optimization for dynamic economic dispatch based on alternating direction method of multipliers[J]. Proceedings of the CSEE, 2015, 35(10): 2428–2435 [21] 王皓, 艾芊, 吴俊宏, 等. 基于交替方向乘子法的微电网群双层分布式调度方法[J]. 电网技术, 2018, 42(6): 1718–1727 WANG Hao, AI Qian, WU Junhong, et al. Bi-level distributed optimization for microgrid clusters based on alternating direction method of multipliers[J]. Power System Technology, 2018, 42(6): 1718–1727 [22] 吴成辉, 林声宏, 夏成军, 等. 基于模型预测控制的微电网群分布式优化调度[J]. 电网技术, 2020, 44(2): 530–538 WU Chenghui, LIN Shenghong, XIA Chengjun, et al. Distributed optimal dispatch of microgrid cluster based on model predictive control[J]. Power System Technology, 2020, 44(2): 530–538 [23] 陈刚, 杨毅, 杨晓梅, 等. 基于分布式牛顿法的微电网群分布式优化调度方法[J]. 电力系统自动化, 2017, 41(21): 156–162 CHEN Gang, YANG Yi, YANG Xiaomei, et al. Distributed optimization scheduling method for microgrid cluster based on distributed Newton method[J]. Automation of Electric Power Systems, 2017, 41(21): 156–162 [24] 苏磊, 李振坤, 张智泉, 等. 基于机会约束规划的综合能源微网群协调运行策略研究[J]. 电力系统保护与控制, 2021, 49(14): 123–131 SU Lei, LI Zhenkun, ZHANG Zhiquan, et al. A coordinated operation strategy for integrated energy microgrid clusters based on chance-constrained programming[J]. Power System Protection and Control, 2021, 49(14): 123–131 [25] 江道灼, 徐宁, 江崇熙, 等. 蜂巢状有源配电网构想、关键技术与展望[J]. 电力系统自动化, 2019, 43(17): 1–11 JIANG Daozhuo, XU Ning, JIANG Chongxi, et al. Conception, key technology and prospect of honeycomb-shape active distribution network[J]. Automation of Electric Power Systems, 2019, 43(17): 1–11 [26] 杨轶凡, 江道灼, 阮闯, 等. 基于蜂巢状有源配电网的分布式优化调度[J]. 电力建设, 2019, 40(3): 85–93 YANG Yifan, JIANG Daozhuo, RUAN Chuang, et al. Distributed optimal scheduling based on honeycomb active distribution grid[J]. Electric Power Construction, 2019, 40(3): 85–93 [27] 阮闯, 江道灼, 朱乃璇, 等. 蜂巢状有源配电网拓扑及其可靠性评估[J]. 电力建设, 2019, 40(3): 77–84 RUAN Chuang, JIANG Daozhuo, ZHU Naixuan, et al. Topology and reliability evaluation of honeycomb active distribution network[J]. Electric Power Construction, 2019, 40(3): 77–84 [28] 唐洋洋. 改进的多分块凸优化问题的交替方向乘子法[D]. 天津: 南开大学, 2015. TANG Yangyang. Improved alternating direction multiplier method for multi-block convex optimization problems[D]. Tianjin: Nankai University, 2015. [29] HE B S, YUAN X M. Block-wise alternating direction method of multipliers for multiple-block convex programming and beyond[J]. SMAI Journal of Computational Mathematics, 2015, 1: 145–174. [30] ZHU N X, HU P F, LIU S Q, et al. Emergency reserve constrained optimal allocation of energy storage in a novel honeycomb-like microgrid cluster with volatile renewable energy resources[J]. IET Generation, Transmission & Distribution, 2022, 16(2): 305–318.
|