[1] 张漫, 王主丁, 李强, 等. 中压目标网架规划中供电分区优化模型和方法[J]. 电力系统自动化, 2019, 43(16): 125–135 ZHANG Man, WANG Zhuding, LI Qiang, et al. Optimization model and method of power supply area division for planning of medium-voltage target network[J]. Automation of Electric Power Systems, 2019, 43(16): 125–135 [2] 陈哲, 王主丁, 黄河, 等. 中压配电网规划中计及多因素影响的供电分区划分方法[J]. 电网技术, 2020, 44(12): 4636–4643 CHEN Zhe, WANG Zhuding, HUANG He, et al. Power supply area division method with multiple factors’ influence for medium voltage distribution network planning[J]. Power System Technology, 2020, 44(12): 4636–4643 [3] ZHANG B, ZHAO X H, DOU Z H, et al. A new medium and long-term power load forecasting method considering policy factors[J]. IEEE Access, 2021, 9: 160021–160034. [4] 黄存强, 赵雪, 刘兴文, 等. 考虑负荷时空特性的配电系统运行效率评价方法[J]. 南方电网技术, 2021, 15(2): 20–25 HUANG Cunqiang, ZHAO Xue, LIU Xingwen, et al. Evaluation method of distribution system operating efficiency considering load temporal and spatial characteristics[J]. Southern Power System Technology, 2021, 15(2): 20–25 [5] 肖白, 张小娜, 姜卓, 等. 考虑本位元胞接受能力和相邻元胞负荷影响的空间负荷预测[J]. 电力系统自动化, 2021, 45(12): 57–64 XIAO Bai, ZHANG Xiaona, JIANG Zhuo, et al. Spatial load forecasting considering acceptability of standard cell and influence of load of adjacent cells[J]. Automation of Electric Power Systems, 2021, 45(12): 57–64 [6] 杨军胜, 彭石, 王承民, 等. 基于城市用地性质的配网空间负荷预测研究[J]. 电测与仪表, 2018, 55(11): 30–34 YANG Junsheng, PENG Shi, WANG Chengmin, et al. Research of spatial load forecasting in distribution network based on grid partition of urban land-use property[J]. Electrical Measurement & Instrumentation, 2018, 55(11): 30–34 [7] LIANG J H, GAO Y, LIU D N. Research on power medium-and long-term load forecasting based on forecasting empirical partial least squares regression[C]//2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). Guangzhou, China. IEEE, 2021: 395–398. [8] YE C J, DING Y, WANG P, et al. A data-driven bottom-up approach for spatial and temporal electric load forecasting[J]. IEEE Transactions on Power Systems, 2019, 34(3): 1966–1979. [9] 杨智伟, 刘灏, 毕天姝, 等. 基于长短期记忆网络的PMU不良数据检测方法[J]. 电力系统保护与控制, 2020, 48(7): 1–9 YANG Zhiwei, LIU Hao, BI Tianshu, et al. PMU bad data detection method based on long short-term memory network[J]. Power System Protection and Control, 2020, 48(7): 1–9 [10] 林勇, 陈允鹏, 王志勇, 等. 广东电网目标网架方案论证与建议[J]. 南方电网技术, 2020, 14(3): 42–48 LIN Yong, CHEN Yunpeng, WANG Zhiyong, et al. Demonstration and suggestion on network scheme of Guangdong power system[J]. Southern Power System Technology, 2020, 14(3): 42–48 [11] 王骁. 电力系统空间负荷密度预测研究[D]. 上海: 上海交通大学, 2018. WANG Xiao. Study on spatial load density prediction of power system[D]. Shanghai: Shanghai Jiao Tong University, 2018. [12] 徐鑫裕, 边晓燕, 张骞, 等. 基于数据驱动的双馈风电场经VSC-HVDC并网次同步振荡影响因素分析[J]. 电力系统保护与控制, 2021, 49(21): 80–87 XU Xinyu, BIAN Xiaoyan, ZHANG Qian, et al. Analysis of influencing factors of subsynchronous oscillation caused by a DFIG-based wind farm via the VSC-HVDC grid-connected system based on a data driven method[J]. Power System Protection and Control, 2021, 49(21): 80–87 [13] WAHBAH M, EL-FOULY T H M, ZAHAWI B, et al. Hybrid beta-KDE model for solar irradiance probability density estimation[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2): 1110–1113. [14] 罗新, 牛海清, 宋廷汉, 等. 基于S变换和概率神经网络的局部放电特征提取及放电识别方法[J]. 南方电网技术, 2020, 14(7): 17–23 LUO Xin, NIU Haiqing, SONG Tinghan, et al. S transform and probabilistic neural network based partial discharge feature extraction and discharge recognition method[J]. Southern Power System Technology, 2020, 14(7): 17–23 [15] 曹华珍, 王天霖, 张黎明, 等. 基于组合赋权-TOPSIS交直流配电网能效评估[J]. 南方电网技术, 2021, 15(3): 55–67 CAO Huazhen, WANG Tianlin, ZHANG Liming, et al. Energy efficiency evaluation of AC/DC distribution network based on combined weighting TOPSIS[J]. Southern Power System Technology, 2021, 15(3): 55–67 [16] 黄锋, 沈华, 甄昊涵, 等. 基于AHP-灰色定权聚类的低压计量箱状态评估[J]. 电测与仪表, 2019, 56(3): 64–69 HUANG Feng, SHEN Hua, ZHEN Haohan, et al. Condition assessment of low voltage metering box based on AHP-gray fixed weight clustering[J]. Electrical Measurement & Instrumentation, 2019, 56(3): 64–69 [17] LEIBOVITZ G, GIRYES R. Efficient least residual greedy algorithms for sparse recovery[J]. IEEE Transactions on Signal Processing, 2020, 68: 3707–3722. [18] 陈朝晖, 漆家炜, 郑茂然, 等. 基于拓扑分群等值的不同拓扑下方向过流保护整定计算方法[J]. 南方电网技术, 2021, 15(4): 81–89 CHEN Zhaohui, QI Jiawei, ZHENG Maoran, et al. Coordination method of directional overcurrent relays under different topologies based on topology grouping and equivalence[J]. Southern Power System Technology, 2021, 15(4): 81–89 [19] 杨志淳, 沈煜, 杨帆, 等. 基于数据关联分析的低压配电网拓扑识别方法[J]. 电测与仪表, 2020, 57(18): 5–11, 35 YANG Zhichun, SHEN Yu, YANG Fan, et al. Topology identification method of low voltage distribution network based on data association analysis[J]. Electrical Measurement & Instrumentation, 2020, 57(18): 5–11, 35 [20] 李富鹏, 沈秋英, 王森, 等. 基于大数据和多因素组合分析的单元制配电网精细化负荷预测[J]. 智慧电力, 2020, 48(1): 55–62 LI Fupeng, SHEN Qiuying, WANG Sen, et al. Refined load forecasting method for unit distribution network based on big data and multiple factors[J]. Smart Power, 2020, 48(1): 55–62 [21] AFRASIABI M, MOHAMMADI M, RASTEGAR M, et al. Deep-based conditional probability density function forecasting of residential loads[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3646–3657. [22] 邵宇鹰, 彭鹏, 张秋桥, 等. 基于极限学习机与负荷密度指标法的空间负荷预测[J]. 电力工程技术, 2021, 40(1): 86–91 SHAO Yuying, PENG Peng, ZHANG Qiuqiao, et al. Spatial load forecasting based on ELM and clustering algorithm[J]. Electric Power Engineering Technology, 2021, 40(1): 86–91 [23] 刘思, 傅旭华, 叶承晋, 等. 考虑地域差异的配电网空间负荷聚类及一体化预测方法[J]. 电力系统自动化, 2017, 41(3): 70–75,82 LIU Si, FU Xuhua, YE Chengjin, et al. Spatial load clustering and integrated forecasting method of distribution network considering regional difference[J]. Automation of Electric Power Systems, 2017, 41(3): 70–75,82 [24] 杨宏宇, 吕万, 关雅静, 等. 基于高阶累积量与ESPRIT算法的功率振荡检测方法[J]. 电测与仪表, 2021, 58(1): 37–45 YANG Hongyu, LV Wan, GUAN Yajing, et al. Power oscillation detection method based on higher order cumulant and ESPRIT algorithm[J]. Electrical Measurement & Instrumentation, 2021, 58(1): 37–45 [25] 刘思议, 张程, 金涛. 基于相邻系数TQWT与改进TLS-ESPRIT算法的电力系统低频振荡模态辨识[J]. 高电压技术, 2019, 45(3): 890–898 LIU Siyi, ZHANG Cheng, JIN Tao. Research on modes identification of low-frequency oscillation of power system based on adjacent coefficient TQWT and improved TLS-ESPRIT algorithm[J]. High Voltage Engineering, 2019, 45(3): 890–898
|