中国电力 ›› 2021, Vol. 54 ›› Issue (11): 190-198.DOI: 10.11930/j.issn.1004-9649.202009083

• 新能源 • 上一篇    下一篇

基于PCA-KNN融合算法的风力机变桨角度故障诊断方法

陈茜1, 李录平1, 刘瑞1, 杨波2, 邓子豪1, 李重桂1   

  1. 1. 长沙理工大学 能源与动力工程学院,湖南 长沙 410014;
    2. 广州特种承压设备检测研究院,广东 广州 510663
  • 收稿日期:2020-09-09 修回日期:2020-12-10 出版日期:2021-11-05 发布日期:2021-11-16
  • 作者简介:陈茜(1997-),女,硕士研究生,从事动力机械状态检测与故障诊断研究,E-mail:chenxichangsha@163.com;李录平(1963-),男,通信作者,教授,从事动力机械状态检测与故障诊断研究,E-mail:cs_liluping@163.com
  • 基金资助:
    广东省质量技术监督局科技项目(基于SCADA数据信息融合的风力机叶片覆冰诊断与预测技术,2018CT28);湖南省研究生科研创新项目(基于SCADA系统的大功率风电机组故障诊断及报告自动生成技术,CX20190687)

Fault Diagnosis Method of Wind Turbine Pitch Angle Based on PCA-KNN Fusion Algorithm

CHEN Xi1, LI Luping1, LIU Rui1, YANG Bo2, DENG Zihao1, LI Zhonggui1   

  1. 1. College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410014, China;
    2. Guangzhou Special Pressure Equipment Inspection and Research Institute, Guangzhou 510663, China
  • Received:2020-09-09 Revised:2020-12-10 Online:2021-11-05 Published:2021-11-16
  • Supported by:
    This work is supported by Science and Technology Project of Bureau of Quality and Technical Supervision of Guangdong Province (Wind Turbine Blade Icing Diagnosis and Prediction Technology Based on SCADA Data Information Fusion, No.2018CT28) and Research & Innovation Project of Graduate Students in Hunan Province (High Power Wind Turbine Fault Diagnosis and Report Automatic Generation Technology Based on SCADA System, No.CX20190687)

摘要: 针对风力机变桨系统变桨角度4种主要故障类型,基于机组SCADA数据分析,提出一种基于非参数核密度估计和Relief-F特征参数提取数据处理,以及PCA-KNN融合算法故障诊断的风力机变桨角度异常状态识别方法。首先,对风力机SCADA数据进行非参数核密度估计预处理,运用Relief-F算法提取变桨角度故障的7类(13个)特征参数;然后,通过PCA-KNN融合算法对变桨角度故障状态进行识别,结果表明:该方法能够准确识别变桨角度4种主要的故障类型。最后,将改进的PCA-KNN融合算法与常用的KNN算法、PCA-KNN算法和BP神经网络进行对比,结果表明:改进的PCA-KNN融合算法具有更为准确的识别率。

关键词: 风力机, 变桨角度故障, SCADA数据, 非参数核密度估计, Relief-F算法, PCA-KNN融合算法

Abstract: With regard to the four main fault types of the pitch angle of a wind turbine pitch system and the data analysis of the wind turbine, an identification method of abnormal pitch angles of a wind turbine is proposed, depending on nonparametric kernel density estimation and Relief-F based feature extraction for data processing and the PCA-KNN fusion algorithm for fault diagnosis. Firstly, the SCADA data is preprocessed according to nonparametric kernel density estimation, and seven categories (thirteen) of characteristic parameters of pitch angle faults are extracted by the Relief-F algorithm. Then, the PCA-KNN fusion algorithm is used to identify the state of pitch angle faults, and the results show that the proposed method can accurately identify the four main fault types of pitch angles. Finally, the improved PCA-KNN fusion algorithm is compared with the KNN algorithm, the PCA-KNN algorithm and BP neural network, which proves that the improved PCA-KNN fusion algorithm has a higher recognition rate.

Key words: wind turbine, pitch angle fault, SCADA data, nonparametric kernel density estimation, Relief-F algorithm, PCA-KNN fusion algorithm