中国电力 ›› 2023, Vol. 56 ›› Issue (6): 71-81.DOI: 10.11930/j.issn.1004-9649.202205025

• 电网 • 上一篇    下一篇

供电分区场景下基于数据驱动的负荷密度综合评估及预测方法

贾巍, 雷才嘉, 方兵华, 刘涌   

  1. 广东电网有限责任公司广州供电局,广东 广州 510620
  • 收稿日期:2022-05-10 修回日期:2023-05-06 出版日期:2023-06-28 发布日期:2023-07-04
  • 作者简介:贾巍(1981—),男,硕士,工程师,从事配电网规划研究,E-mail:308906793@qq.com;雷才嘉(1982—),男,硕士,高级工程师,从事配电网规划设计,E-mail:eptiger@126.com;方兵华(1986—),男,硕士,高级工程师,从事配电网规划及配网项目管理工作,E-mail:289128190@qq.com;刘涌(1976—),男,通信作者,博士,高级工程师,从事配电网智能规划和电力大数据研究,Email:wangsenhit@163.com
  • 基金资助:
    中国南方电网有限责任公司科技项目(大数据环境下规划负荷特性及供电分区相关影响因素的分析与应用,GZHKJXM20180011)。

A Comprehensive Evaluation and Prediction Method for Load Density Based on Big Data under Power Supply Partition Scenarios

JIA Wei, LEI Caijia, FANG Binghua, LIU Yong   

  1. Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China
  • Received:2022-05-10 Revised:2023-05-06 Online:2023-06-28 Published:2023-07-04
  • Supported by:
    This work is supported by Science & Technology Project of China Southern Power Grid Co., Ltd. (Analysis and Application of Planning Load Characteristics and Power Supply Division Relevant Influencing Factors of Power Supply Zoning in Big Data Environment, No.GZHKJXM20180011).

摘要: 为满足配电网供电分区和网格化规划需求,提出一种基于数据驱动的负荷密度综合评估及中长期精细化预测方法,通过改进Agglomerative算法,实现了相似单元的聚类。所提方法可有效提取出各类负荷密度的典型特征,进而降低系统对数据样本的要求,为后续各类负荷的分类精细化预测提供支持。首先,基于数据思维,通过核密度估计方法对网格内地块样本进行负荷密度特征提取;其次,采用$\bar E $熵权法对各类负荷密度的特征值进行赋权,实现各供电单元不同类型负荷密度的评估,并进一步对供电单元和供电网格的综合负荷密度水平进行计算;最后,通过供电单元聚类,采用最小二乘法对负荷密度S型增长曲线的参数进行分类求解,实现供电单元各类负荷密度的中长期预测。在算例部分,进行了详细分析,结合工程实例验证了该方法的可行性。

关键词: 配电网网格化, 负荷密度, 核密度估计, ē熵权法, 中长期预测

Abstract: In order to meet the requirements of power supply partition and grid planning, a comprehensive evaluation and mid-long term refined prediction method for load density based on big data under power supply scenarios is proposed, and similar units are clustered through the improved Agglomerative algorithm. The proposed method can effectively extract the typical features of various load densities, so as to reduce the requirement of the system for data sampling and provide support for the classified refined forecasting of various loads. Firstly, based on the data samples, the load density features of the plot samples in the grid are extracted with the kernel density estimation (KDE) method. Then, the entropy method is used to weight the eigenvalues to realize the evaluation of different types of load densities in each power supply unit, and further calculate the integrated load density level of the power supply units and power grids. Finally, the power supply units are clustered, and the parameters of the S-shaped growth curve are solved by the least square method, so as to realize the mid-long term prediction of various load densities. In case study, a detailed analysis is carried out, and the effectiveness of the method is verified by engineering examples.

Key words: distribution network grid, load density, KDE, entropy weight method, mid- long term forecast