[1] 刘逸凡, 王淑青, 庆毅辉, 等. 基于EfficientDet和双目摄像头的绝缘子缺陷检测[J]. 中国电力, 2021, 54(2): 156–163, 196 LIU Yifan, WANG Shuqing, QING Yihui, et al. Insulator defect detection based on EfficientDet and binocular camera[J]. Electric Power, 2021, 54(2): 156–163, 196 [2] 李振宇, 郭锐, 赖秋频, 等. 基于计算机视觉的架空输电线路机器人巡检技术综述[J]. 中国电力, 2018, 51(11): 139–146 LI Zhenyu, GUO Rui, LAI Qiupin, et al. Survey of inspection technology of overhead transmission line robot based on computer vision[J]. Electric Power, 2018, 51(11): 139–146 [3] 白洁音, 赵瑞, 谷丰强, 等. 多目标检测和故障识别图像处理方法[J]. 高电压技术, 2019, 45(11): 3504–3511 BAI Jieyin, ZHAO Rui, GU Fengqiang, et al. Multi-target detection and fault recognition image processing method[J]. High Voltage Engineering, 2019, 45(11): 3504–3511 [4] 黄郑, 王永强, 王红星, 等. 基于云雾边异构协同的无人机智慧巡检系统[J]. 中国电力, 2020, 53(4): 161–168 HUANG Zheng, WANG Yongqiang, WANG Hongxing, et al. Design and application of UAV intelligent inspection system for transmission lines based on cloud and fog-edge heterogeneous collaborative computing architecture[J]. Electric Power, 2020, 53(4): 161–168 [5] 杨焰飞, 曹阳. 基于深度学习的无人机拍摄图像绝缘子目标检测[J]. 激光杂志, 2020, 41(10): 63–66 YANG Yanfei, CAO Yang. Image insulator target detection based on deep learning for UAV[J]. Laser Journal, 2020, 41(10): 63–66 [6] 李雪峰, 刘海莹, 刘高华, 等.基于深度学习的输电线路销钉缺陷检测[J/OL].电网技术: 1-9[2021-03-09]. https://doi.org/10.13335/j.1000-3673.pst.2020.1028. LI Xuefeng, LIU Haiying, LIU Gaohua, et al. Transmission line pin defect detection based on deep learning [J/OL]. Power System Technology: 1-9[2021-03-09]. https://doi.org/10.13335/j.1000-3673.pst.2020.1028. [7] 姚春羽, 金立军, 闫书佳. 电网巡检图像中绝缘子的识别[J]. 系统仿真学报, 2012, 24(9): 1818–1822 YAO Chunyu, JIN Lijun, YAN Shujia. Recognition of insulator string in power grid patrol images[J]. Journal of System Simulation, 2012, 24(9): 1818–1822 [8] 王银立, 闫斌. 基于视觉的绝缘子“掉串”缺陷的检测与定位[J]. 计算机工程与设计, 2014, 35(2): 583–587 WANG Yinli, YAN Bin. Vision based detection and location for cracked insulator[J]. Computer Engineering and Design, 2014, 35(2): 583–587 [9] 高强, 孟格格. 基于卷积神经网络的绝缘子故障识别算法研究[J]. 电测与仪表, 2017, 54(21): 30–36 GAO Qiang, MENG Gege. Research of a faulted insulator identification algorithm based on convolution neural network[J]. Electrical Measurement & Instrumentation, 2017, 54(21): 30–36 [10] 潘哲, 张兴忠, 杨罡, 等. 弱监督细粒度分类在绝缘子故障识别中的应用[J]. 山西大学学报(自然科学版), 2020, 43(3): 490–498 PAN Zhe, ZHANG Xingzhong, YANG Gang, et al. Application of weakly supervised fine-grained classification in insulator fault identification[J]. Journal of Shanxi University (Natural Science Edition), 2020, 43(3): 490–498 [11] JIANG H, QIU X J, CHEN J, et al. Insulator fault detection in aerial images based on ensemble learning with multi-level perception[J]. IEEE Access, 2019, 7: 61797–61810. [12] 马富齐, 王波, 董旭柱, 等. 电力视觉边缘智能: 边缘计算驱动下的电力深度视觉加速技术[J]. 电网技术, 2020, 44(6): 2020–2029 MA Fuqi, WANG Bo, DONG Xuzhu, et al. Power vision edge intelligence: power depth vision acceleration technology driven by edge computing[J]. Power System Technology, 2020, 44(6): 2020–2029 [13] 司羽飞, 谭阳红, 汪沨, 等. 面向电力物联网的云边协同结构模型[J]. 中国电机工程学报, 2020, 40(24): 7973–7979, 8234 SI Yufei, TAN Yanghong, WANG Feng, et al. Cloud-edge collaborative structure model for power Internet of Things[J]. Proceedings of the CSEE, 2020, 40(24): 7973–7979, 8234 [14] 赵文清, 严海, 周震东, 等. 基于残差BP神经网络的变压器故障诊断[J]. 电力自动化设备, 2020, 40(2): 143–148 ZHAO Wenqing, YAN Hai, ZHOU Zhendong, et al. Fault diagnosis of transformer based on residual BP neural network[J]. Electric Power Automation Equipment, 2020, 40(2): 143–148 [15] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. [16] ZHANG Y M, XU M, LI X D. Remote sensing image retrieval based on DenseNet model and CBAM[C]//2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET). Beijing, China. IEEE, 2020: 86-90. [17] 路艳巧, 孙翠英, 曹红卫, 等. 基于边缘计算与深度学习的输电设备异物检测方法[J]. 中国电力, 2020, 53(6): 27–33 LU Yanqiao, SUN Cuiying, CAO Hongwei, et al. Foreign body detection method for transmission equipment based on edge computing and deep learning[J]. Electric Power, 2020, 53(6): 27–33 [18] 原吕泽芮, 顾洁, 金之俭. 基于云-边-端协同的电力物联网用户侧数据应用框架[J]. 电力建设, 2020, 41(7): 1–8 YUAN Lüzerui, GU Jie, JIN Zhijian. User-side data application framework based on cloud-edge-user collaboration in power Internet of Things[J]. Electric Power Construction, 2020, 41(7): 1–8 [19] 徐风, 苗哲, 业巧林. 基于卷积注意力模块的端到端遥感图像分类[J]. 林业工程学报, 2020, 5(4): 133–138 XU Feng, MIAO Zhe, YE Qiaolin. End-to-end remote sensing image classification framework based on convolutional block attention module[J]. Journal of Forestry Engineering, 2020, 5(4): 133–138 [20] 徐凯, 梁志坚, 张镱议, 等. 基于GoogLeNet Inception-V3模型的电力设备图像识别[J]. 高压电器, 2020, 56(9): 129–135, 143 XU Kai, LIANG Zhijian, ZHANG Yiyi, et al. Image recognition of electric equipment based on GoogLeNet inception-V3 model[J]. High Voltage Apparatus, 2020, 56(9): 129–135, 143 [21] 赵小强, 梁浩鹏. 使用改进残差神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报, 2020, 54(9): 23–31 ZHAO Xiaoqiang, LIANG Haopeng. Fault diagnosis method for rolling bearing under variable working conditions using improved residual neural network[J]. Journal of Xi'an Jiaotong University, 2020, 54(9): 23–31 [22] GitHub-shanghai/InsulatorDataSet: 提供无人机捕获的普通绝缘子图像和合成有缺陷的绝缘子图像[EB/OL]. https://github.com/InsulatorData/InsulatorDataSet. [23] 罗建军, 刘振声, 龚翔, 等. 基于无人机图像与迁移学习的线路绝缘子状态评价方法[J]. 电力工程技术, 2019, 38(5): 30–36 LUO Jianjun, LIU Zhensheng, GONG Xiang, et al. Insulator state evaluation method based on UAV image and migration learning[J]. Electric Power Engineering Technology, 2019, 38(5): 30–36 [24] 龚钢军, 张帅, 吴秋新, 等. 基于TensorFlow的高压输电线路异物识别[J]. 电力自动化设备, 2019, 39(4): 204–209, 216 GONG Gangjun, ZHANG Shuai, WU Qiuxin, et al. Foreign body identification based on TensorFlow for high voltage transmission line[J]. Electric Power Automation Equipment, 2019, 39(4): 204–209, 216
|