[1] 马莉, 范孟华, 曲昊源, 等. 中国电力市场建设路径及市场运行关键问题[J]. 中国电力, 2020, 53(12): 1–9 MA Li, FAN Menghua, QU Haoyuan, et al. Construction path and key operation issues of electricity market in China[J]. Electric Power, 2020, 53(12): 1–9 [2] 赵文猛, 周保荣, 毛田, 等. 大湾区电力现货市场建设路径及出清模型[J]. 南方电网技术, 2020, 14(9): 90–96 ZHAO Wenmeng, ZHOU Baorong, MAO Tian, et al. Construction path and market clearing model of electricity spot market in greater bay area[J]. Southern Power System Technology, 2020, 14(9): 90–96 [3] KOLTSAKLIS N E, DAGOUMAS A S. Incorporating unit commitment aspects to the European electricity markets algorithm: an optimization model for the joint clearing of energy and reserve markets[J]. Applied Energy, 2018, 231: 235–258. [4] DIVÉNYI D, POLGÁRI B, SLEISZ Á, et al. Algorithm design for European electricity market clearing with joint allocation of energy and control reserves[J]. International Journal of Electrical Power & Energy Systems, 2019, 111: 269–285. [5] 赵文猛, 周保荣, 毛田, 等. 欧洲统一电力市场演变和日前市场出清模型[J]. 南方电网技术, 2020, 14(5): 74–79 ZHAO Wenmeng, ZHOU Baorong, MAO Tian, et al. European unified electricity market evolution and its day-ahead market clearing model[J]. Southern Power System Technology, 2020, 14(5): 74–79 [6] WANG J X, ZHONG H W, YANG Z F, et al. Incentive mechanism for clearing energy and reserve markets in multi-area power systems[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2470–2482. [7] XU Q Y, ZHANG N, KANG C Q, et al. A game theoretical pricing mechanism for multi-area spinning reserve trading considering wind power uncertainty[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1084–1095. [8] KARIMI A, SEIFI H, SHEIKH-EL-ESLAMI M K. Market-based mechanism for multi-area power exchange management in a multiple electricity market[J]. IET Generation, Transmission & Distribution, 2015, 9(13): 1662–1671. [9] 黄丽平, 王逸飞, 郭俊韬, 等. 考虑电网载荷均衡度及N–1安全约束的防灾经济调度[J]. 电力系统自动化, 2020, 44(13): 56–63 HUANG Liping, WANG Yifei, GUO Juntao, et al. Economic dispatch for disaster prevention considering load rate homogeneity of power grid and N–1 security constraints[J]. Automation of Electric Power Systems, 2020, 44(13): 56–63 [10] 王砚平, 鲍威, 李赢, 等. 考虑N–1故障的安全约束机组组合模型及约束削减方法[J]. 电力自动化设备, 2021, 41(7): 167–175 WANG Yanping, BAO Wei, LI Ying, et al. Model and constraint-reduction method for security-constrained unit commitment considering N–1 contingency[J]. Electric Power Automation Equipment, 2021, 41(7): 167–175 [11] 张翔宇, 李丹, 张予燮, 等. 考虑N–1安全约束的风-火-蓄联合优化调度模型及仿真[J]. 水电能源科学, 2019, 37(8): 202–206 ZHANG Xiangyu, LI Dan, ZHANG Yuxie, et al. Wind-thermal-storage joint optimization scheduling model considering N–1 safety constraints[J]. Water Resources and Power, 2019, 37(8): 202–206 [12] RYAN S M, WETS R J B, WOODRUFF D L, et al. Toward scalable, parallel progressive hedging for stochastic unit commitment[C]//2013 IEEE Power & Energy Society General Meeting. Vancouver, BC, Canada. IEEE, 2013: 1–5. [13] XIONG P, JIRUTITIJAROEN P. A stochastic optimization formulation of unit commitment with reliability constraints[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 2200–2208. [14] 王明捐, 刘友波, 高红均, 等. 计及运行成本风险的主动配电网两阶段随机模型预测控制[J]. 电网与清洁能源, 2020, 36(11): 8–18 WANG Mingjuan, LIU Youbo, GAO Hongjun, et al. A two-stage stochastic model predictive control strategy for active distribution network considering operation cost risk[J]. Power System and Clean Energy, 2020, 36(11): 8–18 [15] 张简炼. 考虑需求响应及线路可靠性的风险调度策略研究[D]. 杭州: 浙江大学, 2020 ZHANG Jianlian. Research on risk dispatching strategy considering demand response and line reliability[D]. Hangzhou: Zhejiang University, 2020. [16] Federal Energy Regulatory Commission Staff Team, Federal Energy Regulatory Commission. Recent ISO software enhancements and future software and modeling plans[EB/OL] (2011-10)[2021-09-10]. https://www.ferc.gov/sites/default/files/2020-05/rto-iso-soft-2011.pdf [17] BAKER K. Solutions of DC OPF are never AC feasible[C]//Proceedings of the Twelfth ACM International Conference on Future Energy Systems. Virtual Event Italy. New York, NY, USA: ACM, 2021: 264-268. [18] AL-ABDULLAH Y M, SALLOUM A, HEDMAN K W, et al. Analyzing the impacts of constraint relaxation practices in electric energy markets[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2566–2577. [19] AL-ABDULLAH Y, KHORSAND M A, HEDMAN K W. Analyzing the impacts of out-of-market corrections[C]//2013 IREP Symposium Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid. Rethymno, Greece. IEEE, 2013: 1–10. [20] SALLOUM A, AL-ABDULLAH Y M, VITTAL V, et al. Impacts of constraint relaxations on power system operational security[J]. IEEE Power and Energy Technology Systems Journal, 2016, 3(3): 99–108. [21] AL-ABDULLAH Y M, ABDI-KHORSAND M, HEDMAN K W. The role of out-of-market corrections in day-ahead scheduling[J]. IEEE Transactions on Power Systems, 2015, 30(4): 1937–1946. [22] 马晓伟, 薛晨, 任景, 等. 西北省间调峰辅助服务市场机制设计与实践[J]. 中国电力, 2021, 54(6): 2–11 MA Xiaowei, XUE Chen, REN Jing, et al. Design and practice of inter-provincial peak regulation auxiliary service market mechanism for northwest China power grid[J]. Electric Power, 2021, 54(6): 2–11 [23] ALABDULLAH Y M . Energy market transparency: analyzing the impacts of constraint relaxation and out-of-market correction practices in electric energy markets[D]. Arizona: Arizona State University, 2016.
|