中国电力 ›› 2023, Vol. 56 ›› Issue (12): 217-226, 237.DOI: 10.11930/j.issn.1004-9649.202302065
赵隆1,2(), 温冠儒1(
), 刘志成1, 袁鹏2, 董新胜3
收稿日期:
2023-02-20
接受日期:
2023-08-28
出版日期:
2023-12-28
发布日期:
2023-12-28
作者简介:
赵隆(1987—),男,通信作者,博士,副教授,从事输电线路在线监测及故障诊断,E-mail: zhaolong@xpu.edu.cn基金资助:
Long ZHAO1,2(), Guanru WEN1(
), Zhicheng LIU1, Peng YUAN2, Xinsheng DONG3
Received:
2023-02-20
Accepted:
2023-08-28
Online:
2023-12-28
Published:
2023-12-28
Supported by:
摘要:
针对输电杆塔结构状态信息提取难度大、精度低等问题,提出了一种基于北方苍鹰算法优化的变分模态分解(northern goshawk optimized variational mode decomposition,NGO-VMD)与长短期记忆(long short-term memory,LSTM)神经网络的输电杆塔倾斜状态识别方案。通过北方苍鹰优化算法解决了变分模态分解参数难确定的问题,并且证明其分解的各阶本征模态分量(intrinsic mode function,IMF)可以有效提取出杆塔结构的模态信息。为了使信息特征更为明显,对IMF分量进行奇异值分解(singular value decomposition,SVD),发现各阶分量的奇异值在杆塔不同状态下有较为明显的区别。最后引入LSTM神经网络进行特征分类,形成故障诊断模型。依托某110 kV猫头塔对模型进行试验验证,结果表明:所提方法对杆塔倾斜状态的识别准确率为96.68%,与其他方法相比,具有效率更高、稳定性更强、更加精准的优势。
赵隆, 温冠儒, 刘志成, 袁鹏, 董新胜. 基于参数优化的VMD-SVD和LSTM的输电杆塔倾斜状态识别[J]. 中国电力, 2023, 56(12): 217-226, 237.
Long ZHAO, Guanru WEN, Zhicheng LIU, Peng YUAN, Xinsheng DONG. Transmission Tower Tilt State Recognition Based on Parameter Optimization of VMD-SVD and LSTM[J]. Electric Power, 2023, 56(12): 217-226, 237.
模态数 | 固有频率/Hz | |
1 | 2.5770 | |
2 | 3.2770 | |
3 | 9.2728 | |
4 | 14.8530 | |
5 | 17.2590 |
表 1 杆塔固有频率
Table 1 Tower inherent frequency
模态数 | 固有频率/Hz | |
1 | 2.5770 | |
2 | 3.2770 | |
3 | 9.2728 | |
4 | 14.8530 | |
5 | 17.2590 |
分类方法 | 训练集准确率/% | 测试集准确率/% | ||
LSTM | 98.89 | 96.67 | ||
BP | 95.56 | 88.34 | ||
RF | 94.45 | 91.67 | ||
SVM | 84.45 | 76.67 |
表 2 不同分类方法的准确率
Table 2 Accuracy of different classification methods
分类方法 | 训练集准确率/% | 测试集准确率/% | ||
LSTM | 98.89 | 96.67 | ||
BP | 95.56 | 88.34 | ||
RF | 94.45 | 91.67 | ||
SVM | 84.45 | 76.67 |
1 |
DONG X S, WEN G R, ZHAO M G, et al. Study of the prevention method of ±800 kV transmission tower foundation deviation[J]. Energies, 2023, 16 (6): 2557.
DOI |
2 | 黄新波, 廖明进, 徐冠华, 等. 采用光纤光栅传感器的输电线路铁塔应力监测方法[J]. 电力自动化设备, 2016, 36 (4): 68- 72. |
HUANG Xinbo, LIAO Mingjin, XU Guanhua, et al. Stress monitoring method applying FBG sensor for transmission line towers[J]. Electric Power Automation Equipment, 2016, 36 (4): 68- 72. | |
3 |
LU Z M, GONG H, JIN Q H, et al. A transmission tower tilt state assessment approach based on dense point cloud from UAV-based LiDAR[J]. Remote Sensing, 2022, 14 (2): 408.
DOI |
4 | 高雪莲, 李乐依, 刘文琳. 基于遥感卫星光学影像的杆塔倾斜在线监测方法[J]. 中国电机工程学报, 2022, 42 (16): 5971- 5978, 6171. |
GAO Xuelian, LI Leyi, LIU Wenlin. On-line monitoring method of pole and tower tilt based on remote sensing satellite optical image[J]. Proceedings of the CSEE, 2022, 42 (16): 5971- 5978, 6171. | |
5 |
WU B L, TONG L, CHEN Y. Revised improved DINSAR algorithm for monitoring the inclination displacement of top position of electric power transmission tower[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (6): 877- 881.
DOI |
6 | 何冰, 王媚, 张羽公, 等. 基于振动信号的输电铁塔螺栓松动检测技术研究[J]. 功能材料与器件学报, 2019, 25 (3): 214- 219. |
HE Bing, WANG Mei, ZHANG Yugong, et al. Research on loose detection technology of transmission tower bolt based on vibration signal[J]. Journal of Functional Materials and Devices, 2019, 25 (3): 214- 219. | |
7 | 张安安, 邓芳明. 基于CNN-RVM的输电杆塔外破振动识别方案[J]. 计算机仿真, 2020, 37 (4): 76- 80. |
ZHANG Anan, DENG Fangming. External vibration identification scheme of transmission line tower based on CNN-RVM[J]. Computer Simulation, 2020, 37 (4): 76- 80. | |
8 |
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62 (3): 531- 544.
DOI |
9 | 贾亚飞, 朱永利, 王刘旺, 等. 基于VMD和多尺度熵的变压器内绝缘局部放电信号特征提取及分类[J]. 电工技术学报, 2016, 31 (19): 208- 217. |
JIA Yafei, ZHU Yongli, WANG Liuwang, et al. Feature extraction and classification on partial discharge signals of power transformers based on VMD and multiscale entropy[J]. Transactions of China Electrotechnical Society, 2016, 31 (19): 208- 217. | |
10 | 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49 (5): 73- 81. |
TANG Guiji, WANG Xiaolong. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49 (5): 73- 81. | |
11 |
冯玉芳, 卢厚清, 殷宏, 等. 基于BP神经网络的故障诊断模型研究[J]. 计算机工程与应用, 2019, 55 (6): 24- 30.
DOI |
FENG Yufang, LU Houqing, YIN Hong, et al. Study on fault diagnosis model based on BP neural network[J]. Computer Engineering and Applications, 2019, 55 (6): 24- 30.
DOI |
|
12 |
BAI S, TANG H D, AN S. Coordinate CNNs and LSTMs to categorize scene images with multi-views and multi-levels of abstraction[J]. Expert Systems With Applications, 2019, 120, 298- 309.
DOI |
13 | 王立林, 刘俊. 基于多尺度卷积的船舶行为识别方法[J]. 计算机应用, 2019, 39 (12): 3691- 3696. |
WANG Lilin, LIU Jun. Ship behavior recognition method based on multi-scale convolution[J]. Journal of Computer Applications, 2019, 39 (12): 3691- 3696. | |
14 | 肖雄, 王健翔, 张勇军, 等. 一种用于轴承故障诊断的二维卷积神经网络优化方法[J]. 中国电机工程学报, 2019, 39 (15): 4558- 4568. |
XIAO Xiong, WANG Jianxiang, ZHANG Yongjun, et al. A two-dimensional convolutional neural network optimization method for bearing fault diagnosis[J]. Proceedings of the CSEE, 2019, 39 (15): 4558- 4568. | |
15 |
RAVIKUMAR K N, YADAV A, KUMAR H, et al. Gearbox fault diagnosis based on Multi-Scale deep residual learning and stacked LSTM model[J]. Measurement, 2021, 186, 110099.
DOI |
16 |
DEHGHANI M, HUBÁLOVSKÝ Š, TROJOVSKÝ P. Northern goshawk optimization: a new swarm-based algorithm for solving optimization problems[J]. IEEE Access, 2021, 9, 162059- 162080.
DOI |
17 | YANG W X, TSE P W. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition[J]. NDT & E International, 2003, 36 (6): 419- 432. |
18 | 于洋, 何明, 刘博, 等. 基于TL-LSTM的轴承故障声发射信号识别研究[J]. 仪器仪表学报, 2019, 40 (5): 51- 59. |
YU Yang, HE Ming, LIU Bo, et al. Research on acoustic emission signal recognition of bearing fault based on TL-LSTM[J]. Chinese Journal of Scientific Instrument, 2019, 40 (5): 51- 59. | |
19 |
BIE F F, DU T F, LYU F X, et al. An integrated approach based on improved CEEMDAN and LSTM deep learning neural network for fault diagnosis of reciprocating pump[J]. IEEE Access, 2021, 9, 23301- 23310.
DOI |
20 |
郑天堂, 黄新波, 赵隆, 等. 输电杆塔沉降状态感知技术研究[J]. 广东电力, 2021, 34 (4): 85- 93.
DOI |
ZHENG Tiantang, HUANG Xinbo, ZHAO Long, et al. Research on sensing technology of transmission tower settlement state[J]. Guangdong Electric Power, 2021, 34 (4): 85- 93.
DOI |
|
21 |
KARAMI-MOHAMMADI R, MIRTAHERI M, SALKHORDEH M, et al. Vibration anatomy and damage detection in power transmission towers with limited sensors[J]. Sensors, 2020, 20 (6): 1731.
DOI |
22 |
LEE C Y, HUANG N E, CHERN C C, et al. A study on the dynamic characteristics and ultimate capacity of steel transmission towers[J]. Journal of the Chinese Institute of Engineers, 2013, 36 (3): 273- 294.
DOI |
23 |
ZHANG Q, FU X, REN L, et al. Modal parameters of a transmission tower considering the coupling effects between the tower and lines[J]. Engineering Structures, 2020, 220, 110947.
DOI |
24 |
GAI J B, SHEN J X, HU Y F, et al. An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing[J]. Measurement, 2020, 162, 107901.
DOI |
25 | LIU H M, WANG X A, LU C. Rolling bearing fault diagnosis under variable conditions using Hilbert-Huang transform and singular value decomposition[J]. Mathematical Problems in Engineering, 2014, 2014, 1- 10. |
[1] | 邵必林, 纪丹阳. 基于VMD-SE的电力负荷分量的多特征短期预测[J]. 中国电力, 2024, 57(4): 162-170. |
[2] | 陈庆斌, 杨耿煌, 耿丽清, 苏娟, 孙京生. 基于相似日选取和数据重构的短期光伏功率组合预测方法[J]. 中国电力, 2024, 57(12): 71-81. |
[3] | 杨晓峰, 方逸航, 赵鹏臻, 王承民, 谢宁. 基于K-means和BPNN的风机状态识别[J]. 中国电力, 2023, 56(6): 158-166,175. |
[4] | 于虹, 李昊, 康彪, 汪大海, 张志强, 张贵峰, 张海鹏. 采空塌陷区输电杆塔基础变形率限值研究[J]. 中国电力, 2022, 55(12): 124-134. |
[5] | 黄冬梅, 王玥琦, 胡安铎, 孙锦中, 时帅, 孙园, 房岭锋. 融合多维度特征的绝缘子状态边缘识别方法[J]. 中国电力, 2022, 55(1): 133-141. |
[6] | 胡翀, 徐斌, 甄超, 赵新德, 王昕, 唐兴勇. 基于电压暂降监测数据的敏感负荷非侵入式识别方法[J]. 中国电力, 2021, 54(8): 35-42,51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||