[1] 110 kV柳安线(220 kV柳塘变—110 kV安洛变)地质灾害情况报告[R]. 贵州: 贵州电网有限责任公司毕节供电局, 2017: 1–8. [2] 110 kV柳安线N37‐N39塔位矿区地质灾害调查补充说明[R]. 贵州: 贵州电网有限责任公司毕节供电局, 2017: 1–3. [3] 国家能源局. 采动影响区架空输电线路设计规范: DL/T 5539—2018[S]. 北京: 中国计划出版社, 2018. [4] 郑彬. 采动影响下高压输电线路铁塔的安全性研究[D]. 焦作: 河南理工大学, 2009. ZHENG Bin. Research on the security of high voltage transmission line towers under mining influence[D]. Jiaozuo: Henan Polytechnic University, 2009. [5] 季善浩, 李勃. 煤矿采空区220 kV输电线路转角塔基础沉降及处理[J]. 山东电力技术, 2011, 38(2): 30–33 JI Shanhao, LI Bo. Foundation subsidence and treatment of 220 kV transmission line angel tower in goaf of coal mine[J]. Shandong Electric Power, 2011, 38(2): 30–33 [6] 姚康. 采空区地表变形的机理及数值模拟研究[D]. 长春: 吉林大学, 2014. YAO Kang. Study on ground deformation mechanism and numerical simulation of mined-out areas[D]. Changchun: Jilin University, 2014. [7] 秦庆芝, 曹玉杰, 毛彤宇, 等. 特高压输电线路煤矿采动影响区铁塔基础设计研究[J]. 电力建设, 2009, 30(2): 18–21 QIN Qingzhi, CAO Yujie, MAO Tongyu, et al. Design study of UHV line tower foundation in areas affected by coal mining excavation[J]. Electric Power Construction, 2009, 30(2): 18–21 [8] 袁广林, 陈建稳, 杨庚宇, 等. 动态地表变形对输电铁塔内力和变形的影响[J]. 河海大学学报(自然科学版), 2010, 38(3): 284–289 YUAN Guanglin, CHEN Jianwen, YANG Gengyu, et al. Influence of dynamic ground deformation on internal force and structural deformation of transmission towers[J]. Journal of Hohai University (Natural Sciences), 2010, 38(3): 284–289 [9] 张宏杰, 杨风利, 张鑫, 等. 基于现场实测沉降数据的复合防护板基础铁塔承载力评估[J]. 建筑结构, 2018, 48(13): 90–95 ZHANG Hongjie, YANG Fengli, ZHANG Xin, et al. Bearing capacity estimate based on field test settlement data of steel tower with composite protective plate basement[J]. Building Structure, 2018, 48(13): 90–95 [10] 刘建红, 杨波, 节连彬, 等. 采动区输电塔线体系在地表水平变形和边界层风作用下的承载性能及安全性评价[J]. 工业建筑, 2021, 51(11): 90–99 LIU Jianhong, YANG Bo, JIE Lianbin, et al. Bearing performances and safety assessment of transmission tower-line systems in mining areas under surface horizontal deformation and boundary layer wind[J]. Industrial Construction, 2021, 51(11): 90–99 [11] 李淮海, 王璋奇, 李恒遥, 等. 适应基础均匀沉降的高度可调铁塔结构设计及试验研究[J]. 电网技术, 2007, 31(19): 83–86 LI Huaihai, WANG Zhangqi, LI Hengyao, et al. Structural design and experimental investigation of transmission tower with adjustable height in adaptation to uniform foundation settlement[J]. Power System Technology, 2007, 31(19): 83–86 [12] YUAN G L, SHU Q J, ZHANG Y F, et al. Model experiment on anti-deformation performance of a self-supporting transmission tower in a subsidence area[J]. International Journal of Mining Science and Technology, 2012, 22(1): 57–61. [13] SHU Q J, YUAN G L, HUANG Z H, et al. The behaviour of the power transmission tower subjected to horizontal support's movements[J]. Engineering Structures, 2016, 123: 166–180. [14] SHU Q J, HUANG Z H, YUAN G L, et al. Impact of wind loads on the resistance capacity of the transmission tower subjected to ground surface deformations[J]. Thin-Walled Structures, 2018, 131: 619–630. [15] 黄新波, 陈子良, 赵隆, 等. 110 kV输电线路铁塔塔基沉降应力仿真分析与试验[J]. 电力自动化设备, 2017, 37(4): 153–158 HUANG Xinbo, CHEN Ziliang, ZHAO Long, et al. Stress simulation and experiment for tower foundation settlement of 110 kV transmission line[J]. Electric Power Automation Equipment, 2017, 37(4): 153–158 [16] 杨风利, 杨靖波, 韩军科, 等. 煤矿采空区基础变形特高压输电塔的承载力计算[J]. 中国电机工程学报, 2009, 29(1): 100–106 YANG Fengli, YANG Jingbo, HAN Junke, et al. Bearing capacity computation of UHV transmission tower with foundation deformation above coaf of goal mine[J]. Proceedings of the CSEE, 2009, 29(1): 100–106 [17] 刘鸣, 李永诰, 张厚启, 等. 地质灾害区输电塔架安全分析[J]. 中国电力, 2012, 45(5): 34–38 LIU Ming, LI Yonggao, ZHANG Houqi, et al. Safety analysis of typical transmission tower in geologic disaster zone[J]. Electric Power, 2012, 45(5): 34–38 [18] SHU Q J, YUAN G L, GUO G L, et al. Limits to foundation displacement of an extra high voltage transmission tower in a mining subsidence area[J]. International Journal of Mining Science and Technology, 2012, 22(1): 13–18. [19] 田家栋. 不均匀沉降下干字型输电塔倒塌分析与倾斜监测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. TIAN Jiadong. Study on collapse analysis and inclination monitoring method of Gan-type transmission tower under uneven settlement[D]. Harbin: Harbin Institute of Technology, 2019. [20] 康彪, 汪大海, 张志强. 基础变形作用下输电杆塔结构的破坏准则研究[J]. 高电压技术, 2021, 47(zk2): 179–185 KANG Biao, WANG Dahai, ZHANG Zhiqiang. Study on failure criterion of transmission tower structure under foundation deformation[J]. High Voltage Technology, 2021, 47(zk2): 179–185 [21] 仲崇硕. 地表变形作用下输电塔线体系的风振响应和承载性能研究[D]. 徐州: 中国矿业大学, 2019. ZHONG Chongshuo. Study on wind-induced response and bearing performance of transmission tower-line systems affected by ground surface deformation[D]. Xuzhou: China University of Mining and Technology, 2019. [22] 方春华, 陶玉宁, 张威, 等. 实测风速分析模拟及微地形下杆塔风速修正方法[J]. 中国电力, 2022, 55(6): 146–153 FANG Chunhua, TAO Yuning, ZHANG Wei, et al. Analysis and simulation of measured wind speed and wind speed correction method of tower under microtopography[J]. Electric Power, 2022, 55(6): 146–153 [23] 胡京, 邓颖, 蒋兴良, 等. 输电线路覆冰垭口微地形的特征提取与识别方法[J]. 中国电力, 2022, 55(8): 135–142 HU Jing, DENG Ying, JIANG Xingliang, et al. Feature extraction and identification method of ice-covered saddle mircotopography for transmission lines[J]. Electric Power, 2022, 55(8): 135–142 [24] 中国电力工程顾问集团公司. 煤矿采空区输电线路岩石地基锚杆基础研究报告[R]. 2019. [25] 国家能源局. 架空输电线路运行规程: DL/T 741—2019[S]. 北京: 中国电力出版社, 2019. [26] 中华人民共和国国家发展和改革委员会. 架空送电线路基础设计技术规定: DL/T5219—2017[S]. 北京: 中国电力出版社, 2017.
|