中国电力 ›› 2020, Vol. 53 ›› Issue (8): 158-163.DOI: 10.11930/j.issn.1004-9649.201910099

• 节能与环保 • 上一篇    下一篇

基于互信息和PCA理论的湿法烟气脱硫工况特征提取方法

刘文慧1, 徐遵义1, 张旭冉1, 张海燕2   

  1. 1. 山东建筑大学 计算机科学与技术学院,山东 济南 250101;
    2. 华电国际电力股份有限公司技术服务中心,山东 济南 250014
  • 收稿日期:2019-10-24 修回日期:2020-03-07 发布日期:2020-08-05
  • 作者简介:刘文慧(1994-),女,硕士研究生,从事数据挖掘与火电脱硫优化研究,E-mail:sdjzulwh@163.com;徐遵义(1969-),男,通信作者,副教授,从事火电机组优化与风电机组故障预测与数据挖掘研究,E-mail:zunyixu@sdjzu.edu.cn;张旭冉(1993-),女,硕士研究生,从事数据挖掘与火电脱硫优化研究,E-mail:935756114@qq.com;张海燕(1977-),女,高级工程师,从事数据挖掘与火电脱硫优化研究,E-mail:2458957941@qq.com
  • 基金资助:
    中国华电集团有限公司2019年度科技项目(CHDKJ18-02-52)

Feature Extraction Method for Wet Flue Gas Desulfurization Under Operating Conditions Based on Mutual Information and PCA Theory

LIU Wenhui1, XU Zunyi1, ZHANG Xuran1, ZHANG Haiyan2   

  1. 1. School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China;
    2. Technical Service Center, Huadian Power International Co., Ltd., Jinan 250014, China
  • Received:2019-10-24 Revised:2020-03-07 Published:2020-08-05
  • Supported by:
    This work is supported by 2019 Science and Technology Project of China Huadian Corporation Ltd. (No.CHDKJ18-02-52)

摘要: 目前火电厂湿法烟气脱硫系统优化研究中主要采用主成分分析法进行特征提取,但由于湿法烟气脱硫系统能耗影响因素之间存在高耦合、非线性特征,现有特征提取方法无法评估特征间非线性关系。为此提出了一种基于互信息和主成分分析理论的特征提取方法。该方法用特征间的互信息矩阵取代主成分分析中的协方差矩阵,其特征向量表示新的主成分空间中各主成分的方向,特征值作为评价准则判断主成分维数。使用该方法对某电厂脱硫实测数据进行特征提取,实验结果表明:该方法降维效果更好,使用基于网格搜索法的支持向量机作为分类器,相同维度的主成分提出方法分类正确率更高;使用该方法进行浆液循环泵运行方式优化,耗电量平均降低约14.69%。

关键词: 湿法烟气脱硫, 特征提取, 互信息, 主成分分析, 支持向量机

Abstract: So far the principal component analysis is still the most commonly used method for feature extraction in the optimization research on wet flue gas desulfurization (WFGD) system. However, due to the nonlinearities and the high mutual coupling of the factors affecting the energy consumption of the WFGD system, there is no feasible way for the existing feature extraction methods to evaluate the defects of the non-linear relationship between the features. Therefore this paper proposes a feature extraction method based on mutual information and principal component analysis (MI-PCA), in which the covariance matrix in principal component analysis is replaced with a mutual information matrix between features. The eigenvector represents the direction of each principal component in the new principal component space, while the eigenvalue determines the principal component dimension as the evaluation criterion. Through the implementation of the proposed method the characteristics of the measured desulfurization data of a power plant is therefore extracted. From the experimental results this method has demonstrated better dimensionality reduction effect. With the aid of the support vector machine based on grid search method as the classifier, higher classification accuracy is observed assuming the same dimensions of the principal components. Finally, by using this method in the optimization of the operation mode of the slurry circulation pump, the average power consumption has been reduced by about 14.69%.

Key words: wet flue gas desulfurization, feature extraction, mutual information, principal component analysis, support vector machine