[1] 代杰杰, 宋辉, 杨祎, 等. 基于油中气体分析的变压器故障诊断ReLU-DBN方法[J]. 电网技术, 2018, 42(2): 658–664 DAI Jiejie, SONG Hui, YANG Yi, et al. Dissolved gas analysis of insulating oil for power transformer fault diagnosis based on Re LU-DBN[J]. Power System Technology, 2018, 42(2): 658–664 [2] 李恩文, 王力农, 宋斌, 等. 基于混沌序列的变压器油色谱数据并行聚类分析[J]. 电工技术学报, 2019, 34(24): 5104–5114 LI Enwen, WANG Linong, SONG Bin, et al. Parallel clustering analysis of dissolved gas analysis data based on chaotic sequences full text replacement[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5104–5114 [3] 王文博. 基于不平衡数据集的变压器缺陷预测[D]. 北京: 华北电力大学, 2020. WANG Wenbo. Transformer defect prediction based on imbalanced data set[D]. Beijing: North China Electric Power University, 2020. [4] 崔宇, 侯慧娟, 苏磊, 等. 考虑不平衡案例样本的电力变压器故障诊断方法[J]. 高电压技术, 2020, 46(1): 33–41 CUI Yu, HOU Huijuan, SU Lei, et al. Fault diagnosis method for power transformer considering imbalanced class distribution[J]. High Voltage Engineering, 2020, 46(1): 33–41 [5] 田臣, 周丽娟. 基于带多数类权重的少数类过采样技术和随机森林的信用评估方法[J]. 计算机应用, 2019, 39(6): 1707–1712 TIAN Chen, ZHOU Lijuan. Credit assessment method based on majority weight minority oversampling technique and random forest[J]. Journal of Computer Applications, 2019, 39(6): 1707–1712 [6] KIM S, PARK J, KIM W, et al. Learning from even a weak teacher: Bridging rule-based Duval method and a deep neural network for power transformer fault diagnosis[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107619. [7] 张天翼, 丁立新. 一种基于SMOTE的不平衡数据集重采样方法[J]. 计算机应用与软件, 2021, 38(9): 273–279 ZHANG Tianyi, DING Lixin. A new resampling method based on smote for imbalanced data set[J]. Computer Applications and Software, 2021, 38(9): 273–279 [8] 王忠震, 黄勃, 方志军, 等. 改进SMOTE的不平衡数据集成分类算法[J]. 计算机应用, 2019, 39(9): 2591–2596 WANG Zhongzhen, HUANG Bo, FANG Zhijun, et al. Improved SMOTE unbalanced data integration classification algorithm[J]. Journal of Computer Applications, 2019, 39(9): 2591–2596 [9] 李亮, 范瑾, 闫林, 等. 基于混合采样和支持向量机的变压器故障诊断[J]. 中国电力, 2021, 54(12): 150–155 LI Liang, FAN Jin, YAN Lin, et al. Transformer fault diagnosis based on hybrid sampling and support vector machines[J]. Electric Power, 2021, 54(12): 150–155 [10] 董宏成, 文志云, 万玉辉, 等. 基于DPC聚类重采样结合ELM的不平衡数据分类算法[J]. 计算机工程与科学, 2021, 43(10): 1856–1863 DONG Hongcheng, WEN Zhiyun, WAN Yuhui, et al. An imbalanced data classification algorithm based on DPC clustering resampling combined with ELM[J]. Computer Engineering & Science, 2021, 43(10): 1856–1863 [11] 李黄曼, 张勇, 张瑶. 基于ISSA优化SVM的变压器故障诊断研究[J]. 电子测量与仪器学报, 2021, 35(3): 123–129 LI Huangman, ZHANG Yong, ZHANG Yao. Study of transformer fault diagnosis based on improved sparrow search algorithm optimized support vector machine[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(3): 123–129 [12] 郝玲玲, 朱永利, 王永正. 基于DCAE-KSSELM的变压器故障诊断方法[J]. 中国电力, 2022, 55(2): 125–130 HAO Lingling, ZHU Yongli, WANG Yongzheng. Transformer fault diagnosis method based on DCAE-KSSELM[J]. Electric Power, 2022, 55(2): 125–130 [13] 黄新波, 王享, 田毅, 等. 基于PSO-ELM融合动态加权AdaBoost的变压器故障诊断方法[J]. 高压电器, 2020, 56(5): 39–46 HUANG Xinbo, WANG Xiang, TIAN Yi, et al. Transformer fault diagnosis algorithm based on PSO-ELM fusion dynamically weighted AdaBoost[J]. High Voltage Apparatus, 2020, 56(5): 39–46 [14] 熊海涛, 吴俊杰, 刘洪甫, 等. 分类中的类重叠问题及其处理方法研究[J]. 管理科学学报, 2013, 16(4): 8-21. XIONG Haitao, WU Junjie, LIU Hongfu, et al Research on class overlap in classification and its processing methods [J] Journal of management science in China, 2013, 16(4): 8-21. [15] VUTTIPITTAYAMONGKOL P, ELYAN E, PETROVSKI A. On the class overlap problem in imbalanced data classification[J]. Knowledge-Based Systems, 2021, 212(1): 106631. [16] LIU C L. Partial discriminative training for classification of overlapping classes in document analysis[J]. International Journal of Document Analysis and Recognition (IJDAR), 2008, 11(2): 53–65. [17] GARCÍA V, ALEJO R, SÁNCHEZ J S, et al. Combined effects of class imbalance and class overlap on instance-based classification[C]//Intelligent Data Engineering and Automated Learning – IDEAL 2006, 2006. [18] STEFANOWSKI J. Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data[M]. Springer Berlin Heidelberg, 2013. [19] VUTTIPITTAYAMONGKOL P, ELYAN E. Neighbourhood-based under sampling approach for handling imbalanced and overlapped data[J]. Information Sciences, 2020, 509(1): 47–70. [20] 吴园园, 申立勇. 基于类重叠度欠采样的不平衡模糊多类支持向量机[J]. 中国科学院大学学报, 2018, 35(4): 536–543 WU Yuanyuan, SHEN Liyong. Imbalanced fuzzy multiclass support vector machine algorithm based on class-overlap degree undersampling[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(4): 536–543 [21] 刘晟, 朱玉全, 孙金津. 基于核空间相对密度的SVDD多类分类算法[J]. 计算机应用研究, 2010, 27(5): 1694–1696 LIU Sheng, ZHU Yuquan, SUN Jinjin. SVDD multiclass classification algorithm based on relative density in kernel space[J]. Application Research of Computers, 2010, 27(5): 1694–1696 [22] GARCíA V, MOLLINEDA R A, SáNCHEZ J S. On the k-NN performance in a challenging scenario of imbalance and overlapping[J]. Pattern Analysis and Applications, 2008, 11(3/4): 269–280. [23] 瞿俊. 基于重叠度的层次聚类算法研究及其应用[D]. 厦门: 厦门大学, 2007. QU Jun. Research on overlap similarity-based hierarchical clustering algorithms and its application[D]. Xiamen: Xiamen University, 2007. [24] 李鹏, 黄培炜, 丁瀛, 等. 基于NSGA-Ⅱ和SVDD的转向架构架异常状态监测[J]. 传感技术学报, 2021, 34(7): 874–879 LI Peng, HUANG Peiwei, DING Ying, et al. Abnormal condition monitoring of bogie frame based on NSGA-Ⅱ and SVDD[J]. Chinese Journal of Sensors and Actuators, 2021, 34(7): 874–879 [25] 李凯, 李洁. 基于pinball损失的结构模糊多分类支持向量机算法[J]. 计算机应用, 2021, 41(11): 3104–3112 LI Kai, LI Jie. Structure-fuzzy multi-class support vector machine algorithm based on pinball loss[J]. Journal of Computer Applications, 2021, 41(11): 3104–3112 [26] 韩赛赛, 刘宝柱, 艾欣. 基于MCMC方法和油色谱数据的变压器动态故障率模型[J]. 电力系统保护与控制, 2019, 47(15): 1–8 HAN Saisai, LIU Baozhu, AI Xin. Transformer dynamic failure rate model based on MCMC method and oil chromatographic data[J]. Power System Protection and Control, 2019, 47(15): 1–8 [27] 方涛, 钱晔, 郭灿杰, 等. 基于天牛须搜索优化支持向量机的变压器故障诊断研究[J]. 电力系统保护与控制, 2020, 48(20): 90–96 FANG Tao, QIAN Ye, GUO Canjie, et al. Research on transformer fault diagnosis based on a beetle antennae search optimized support vector machine[J]. Power System Protection and Control, 2020, 48(20): 90–96 [28] 张弛, 吴东, 王伟, 等. 不平衡样本下基于变分自编码器预处理深度学习和DGA的变压器故障诊断方法[J]. 南方电网技术, 2021, 15(3): 68–74 ZHANG Chi, WU Dong, WANG Wei, et al. Transformer fault diagnosis method based on variational auto-encoders preprocessing deep learning and DGA for unbalanced samples[J]. Southern Power System Technology, 2021, 15(3): 68–74
|