中国电力 ›› 2023, Vol. 56 ›› Issue (11): 217-225, 235.DOI: 10.11930/j.issn.1004-9649.202211064
收稿日期:
2022-11-17
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
姜龙(1988—),男,通信作者,博士,高级工程师,从事燃煤电厂环保、智慧电厂、废物综合利用及风险评价,E-mail: kaveykikiy@163.com
基金资助:
Long JIANG(), Liang CHENG, Jinjing LI, Qing LI
Received:
2022-11-17
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
借助大数据分析方法及湿法脱硫工艺运行经验,将脱硫运行中无法实时监测和评价的脱硫浆液品质、喷淋层堵塞概率、喷淋层漏液概率、脱硫浆液石膏过饱和度等关键参数进行指标量化,并提供具体的定性评判规则,更好地判断及指导燃煤电厂湿法脱硫的安全运行。将所构建的量化模型应用至华北地区某1000 MW机组的湿法脱硫系统,当出现影响脱硫浆液品质的运行操作时,比如更换石灰石、脱硫浆液置换等,脱硫浆液品质指标计算值可定量反映脱硫浆液品质的变化;喷淋层堵塞概率值及喷淋层漏液概率值与检修时喷淋层运行状态相符;机组脱硫浆液石膏过饱和度值长期维持在1.10左右并没有结垢风险,与检修时脱硫塔内部过滤网面及内壁无明显垢物相符。
姜龙, 程亮, 李金晶, 李庆. 燃煤电厂湿法脱硫浆液品质及喷淋层运行状况定量评价[J]. 中国电力, 2023, 56(11): 217-225, 235.
Long JIANG, Liang CHENG, Jinjing LI, Qing LI. Quantitative Evaluation of Wet Desulfurization Slurry Quality and Spray Layer Operation in Coal-fired Power Plants[J]. Electric Power, 2023, 56(11): 217-225, 235.
样本标识 | x1 | x2 | x3 | x4 | x5 | x6 | y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 | y9 | η | Qture | Q | ||||||||||||||||||
1 | 1 080 | 3 178 | 124 | 4.87 | 15.5 | 2 349 | 15.65 | 1 202 | 1 061 | 5.22 | 6.27 | 6.92 | 7.18 | 7 427 | 2 364 | 98.99 | 316.9 | 31 | ||||||||||||||||||
2 | 750 | 2 520 | 117 | 5.85 | 19.5 | 2 512 | 18.50 | 1 206 | 1 065 | 5.22 | 5.81 | 7.00 | 7.22 | 7 471 | 2 388 | 99.46 | 318.3 | 62 | ||||||||||||||||||
3 | 500 | 1 838 | 120 | 7.65 | 16.5 | 1 167 | 20.87 | 1 208 | 1 066 | 4.46 | 5.90 | 6.97 | 7.22 | 7 529 | 2 391 | 99.73 | 319.4 | 84 | ||||||||||||||||||
41) | 1 000 | 3 110 | 104 | 3.64 | 15.8 | 1 347 | 26.29 | 1 378 | 1 163 | 4.93 | 5.10 | 6.83 | 7.32 | 7 474 | 2 389 | 99.69 | 318.5 | 65 | ||||||||||||||||||
5 | 999 | 2 957 | 105 | 4.11 | 6.4 | 1 062 | 16.74 | 1 245 | 1 145 | 5.17 | 5.79 | 7.02 | 7.25 | 7 512 | 2 393 | 99.13 | 319.7 | 92 | ||||||||||||||||||
6 | 1 000 | 3 057 | 121 | 4.87 | 16.1 | 1 999 | 17.20 | 1 201 | 1 134 | 4.94 | 6.02 | 6.90 | 7.21 | 7 482 | 2 298 | 99.24 | 317.2 | 39 | ||||||||||||||||||
7 | 800 | 2 632 | 116 | 5.12 | 18.7 | 2 012 | 18.23 | 1 212 | 1 098 | 5.02 | 6.23 | 6.84 | 7.34 | 7 451 | 2 332 | 99.14 | 317.7 | 49 | ||||||||||||||||||
8 | 500 | 2 021 | 109 | 7.21 | 14.9 | 1 123 | 19.32 | 1 204 | 1 104 | 5.11 | 6.32 | 6.92 | 7.19 | 7 502 | 2 353 | 98.84 | 319.3 | 82 | ||||||||||||||||||
| | | | | | | | | | | | | | | | | | | ||||||||||||||||||
故障工况 | 750 | 2 432 | 113 | 5.45 | 20.3 | 1 452 | 19.42 | 1 176 | 1 076 | 5.15 | 6.42 | 7.02 | 7.07 | 7 491 | 2 373 | 99.25 | 317.8 | 50 | ||||||||||||||||||
历史最差 | 1 000 | 3 214 | 119 | 4.35 | 17.7 | 1 699 | 20.23 | 1 189 | 1 067 | 5.25 | 6.55 | 7.12 | 7.14 | 7 495 | 2 333 | 98.01 | 315.4 | 0 | ||||||||||||||||||
历史最佳 | 749 | 2 886 | 98 | 5.58 | 17.1 | 2 480 | 21.68 | 1 171 | 1 092 | 4.76 | 6.46 | 6.96 | 7.14 | 7 533 | 2 395 | 99.93 | 320.1 | 100 | ||||||||||||||||||
| | | | | | | | | | | | | | | | | | | ||||||||||||||||||
777 597 | 997 | 3 416 | 110 | 4.60 | 14.4 | 1 933 | 19.95 | 1 190 | 1 090 | 4.91 | 6.18 | 6.92 | 7.24 | 7 512 | 2 299 | 99.53 | 318.1 | 57 | ||||||||||||||||||
777 598 | 500 | 1 996 | 107 | 6.93 | 17.1 | 1 534 | 21.97 | 1 161 | 1 074 | 6.12 | 6.54 | 7.02 | 7.25 | 7 499 | 2 345 | 99.39 | 319.8 | 93 | ||||||||||||||||||
777 5991) | 1 000 | 3 157 | 103 | 3.22 | 18.1 | 1 381 | 25.57 | 1 143 | 1 142 | 6.05 | 5.86 | 7.11 | 7.21 | 7 483 | 2 383 | 99.80 | 318.1 | 58 | ||||||||||||||||||
777 600 | 1 000 | 2 139 | 104 | 3.61 | 17.7 | 1 457 | 19.70 | 1 167 | 1 083 | 4.84 | 4.93 | 6.88 | 6.99 | 7 503 | 2 308 | 99.15 | 319.1 | 79 |
表 1 脱硫浆液品质及相关参数数据
Table 1 Desulfurization slurry quality and relevant parameter data
样本标识 | x1 | x2 | x3 | x4 | x5 | x6 | y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 | y9 | η | Qture | Q | ||||||||||||||||||
1 | 1 080 | 3 178 | 124 | 4.87 | 15.5 | 2 349 | 15.65 | 1 202 | 1 061 | 5.22 | 6.27 | 6.92 | 7.18 | 7 427 | 2 364 | 98.99 | 316.9 | 31 | ||||||||||||||||||
2 | 750 | 2 520 | 117 | 5.85 | 19.5 | 2 512 | 18.50 | 1 206 | 1 065 | 5.22 | 5.81 | 7.00 | 7.22 | 7 471 | 2 388 | 99.46 | 318.3 | 62 | ||||||||||||||||||
3 | 500 | 1 838 | 120 | 7.65 | 16.5 | 1 167 | 20.87 | 1 208 | 1 066 | 4.46 | 5.90 | 6.97 | 7.22 | 7 529 | 2 391 | 99.73 | 319.4 | 84 | ||||||||||||||||||
41) | 1 000 | 3 110 | 104 | 3.64 | 15.8 | 1 347 | 26.29 | 1 378 | 1 163 | 4.93 | 5.10 | 6.83 | 7.32 | 7 474 | 2 389 | 99.69 | 318.5 | 65 | ||||||||||||||||||
5 | 999 | 2 957 | 105 | 4.11 | 6.4 | 1 062 | 16.74 | 1 245 | 1 145 | 5.17 | 5.79 | 7.02 | 7.25 | 7 512 | 2 393 | 99.13 | 319.7 | 92 | ||||||||||||||||||
6 | 1 000 | 3 057 | 121 | 4.87 | 16.1 | 1 999 | 17.20 | 1 201 | 1 134 | 4.94 | 6.02 | 6.90 | 7.21 | 7 482 | 2 298 | 99.24 | 317.2 | 39 | ||||||||||||||||||
7 | 800 | 2 632 | 116 | 5.12 | 18.7 | 2 012 | 18.23 | 1 212 | 1 098 | 5.02 | 6.23 | 6.84 | 7.34 | 7 451 | 2 332 | 99.14 | 317.7 | 49 | ||||||||||||||||||
8 | 500 | 2 021 | 109 | 7.21 | 14.9 | 1 123 | 19.32 | 1 204 | 1 104 | 5.11 | 6.32 | 6.92 | 7.19 | 7 502 | 2 353 | 98.84 | 319.3 | 82 | ||||||||||||||||||
| | | | | | | | | | | | | | | | | | | ||||||||||||||||||
故障工况 | 750 | 2 432 | 113 | 5.45 | 20.3 | 1 452 | 19.42 | 1 176 | 1 076 | 5.15 | 6.42 | 7.02 | 7.07 | 7 491 | 2 373 | 99.25 | 317.8 | 50 | ||||||||||||||||||
历史最差 | 1 000 | 3 214 | 119 | 4.35 | 17.7 | 1 699 | 20.23 | 1 189 | 1 067 | 5.25 | 6.55 | 7.12 | 7.14 | 7 495 | 2 333 | 98.01 | 315.4 | 0 | ||||||||||||||||||
历史最佳 | 749 | 2 886 | 98 | 5.58 | 17.1 | 2 480 | 21.68 | 1 171 | 1 092 | 4.76 | 6.46 | 6.96 | 7.14 | 7 533 | 2 395 | 99.93 | 320.1 | 100 | ||||||||||||||||||
| | | | | | | | | | | | | | | | | | | ||||||||||||||||||
777 597 | 997 | 3 416 | 110 | 4.60 | 14.4 | 1 933 | 19.95 | 1 190 | 1 090 | 4.91 | 6.18 | 6.92 | 7.24 | 7 512 | 2 299 | 99.53 | 318.1 | 57 | ||||||||||||||||||
777 598 | 500 | 1 996 | 107 | 6.93 | 17.1 | 1 534 | 21.97 | 1 161 | 1 074 | 6.12 | 6.54 | 7.02 | 7.25 | 7 499 | 2 345 | 99.39 | 319.8 | 93 | ||||||||||||||||||
777 5991) | 1 000 | 3 157 | 103 | 3.22 | 18.1 | 1 381 | 25.57 | 1 143 | 1 142 | 6.05 | 5.86 | 7.11 | 7.21 | 7 483 | 2 383 | 99.80 | 318.1 | 58 | ||||||||||||||||||
777 600 | 1 000 | 2 139 | 104 | 3.61 | 17.7 | 1 457 | 19.70 | 1 167 | 1 083 | 4.84 | 4.93 | 6.88 | 6.99 | 7 503 | 2 308 | 99.15 | 319.1 | 79 |
样本标识 | A浆液循环泵 | B浆液循环泵 | C浆液循环泵 | D浆液循环泵 | E浆液循环泵 | F浆液循环泵 | ||||||||||||||||||
电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | |||||||||||||
1 | 75.41 | 284.26 | 84.62 | 305.34 | 90.26 | 323.56 | 44.85 | 243.63 | 43.70 | 253.46 | 48.29 | 261.26 | ||||||||||||
2 | 74.54 | 287.80 | 73.97 | 250.52 | 90.32 | 328.54 | 52.21 | 289.24 | 50.75 | 301.37 | 57.17 | 319.56 | ||||||||||||
3 | 73.80 | 280.58 | 84.35 | 302.51 | 92.92 | 335.22 | 50.23 | 279.09 | 48.98 | 292.96 | 54.84 | 307.01 | ||||||||||||
4 | 73.80 | 280.58 | 84.35 | 302.51 | 92.92 | 335.22 | 52.54 | 294.14 | 50.94 | 305.64 | 57.42 | 324.43 | ||||||||||||
51) | 74.18 | 276.80 | 82.45 | 286.30 | 88.67 | 317.54 | 52.50 | 295.18 | 51.14 | 308.21 | 57.47 | 325.77 | ||||||||||||
6 | 83.55 | 318.27 | 93.43 | 340.14 | 99.54 | 368.10 | 49.47 | 278.25 | 47.98 | 288.74 | 53.39 | 241.67 | ||||||||||||
7 | 65.68 | 234.29 | 82.84 | 297.97 | 88.19 | 317.69 | 46.48 | 256.30 | 45.21 | 265.32 | 50.71 | 280.94 | ||||||||||||
8 | 85.01 | 320.82 | 94.85 | 344.68 | 101.12 | 371.90 | 51.50 | 284.59 | 49.84 | 296.87 | 56.04 | 313.04 | ||||||||||||
| | | | | | | | | | | | | ||||||||||||
763 523 | 74.65 | 287.43 | 74.19 | 250.00 | 90.44 | 328.54 | 45.57 | 247.35 | 44.43 | 255.73 | 49.12 | 268.55 | ||||||||||||
763 524 | 84.50 | 320.30 | 94.15 | 343.70 | 100.20 | 344.99 | 46.54 | 254.70 | 45.17 | 264.92 | 50.62 | 278.54 | ||||||||||||
763 5251) | 72.53 | 271.17 | 82.16 | 291.84 | 87.64 | 313.34 | 49.95 | 282.24 | 48.69 | 295.42 | 54.64 | 313.19 | ||||||||||||
堵塞工况 (2020–09) | 65.11 | 283.77 | 73.20 | 308.77 | 80.95 | 336.86 | 42.43 | 277.54 | 41.40 | 290.77 | 45.33 | 299.80 | ||||||||||||
漏液工况 (2019–03) | 74.23 | 278.60 | 83.18 | 289.20 | 89.36 | 317.77 | 50.26 | 234.23 | 52.23 | 278.45 | 56.88 | 314.24 |
表 2 各浆液循环泵电流及出口压力运行数据
Table 2 Operation data of current and outlet pressure of each slurry circulating pump
样本标识 | A浆液循环泵 | B浆液循环泵 | C浆液循环泵 | D浆液循环泵 | E浆液循环泵 | F浆液循环泵 | ||||||||||||||||||
电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | 电流/A | 出口压力/kPa | |||||||||||||
1 | 75.41 | 284.26 | 84.62 | 305.34 | 90.26 | 323.56 | 44.85 | 243.63 | 43.70 | 253.46 | 48.29 | 261.26 | ||||||||||||
2 | 74.54 | 287.80 | 73.97 | 250.52 | 90.32 | 328.54 | 52.21 | 289.24 | 50.75 | 301.37 | 57.17 | 319.56 | ||||||||||||
3 | 73.80 | 280.58 | 84.35 | 302.51 | 92.92 | 335.22 | 50.23 | 279.09 | 48.98 | 292.96 | 54.84 | 307.01 | ||||||||||||
4 | 73.80 | 280.58 | 84.35 | 302.51 | 92.92 | 335.22 | 52.54 | 294.14 | 50.94 | 305.64 | 57.42 | 324.43 | ||||||||||||
51) | 74.18 | 276.80 | 82.45 | 286.30 | 88.67 | 317.54 | 52.50 | 295.18 | 51.14 | 308.21 | 57.47 | 325.77 | ||||||||||||
6 | 83.55 | 318.27 | 93.43 | 340.14 | 99.54 | 368.10 | 49.47 | 278.25 | 47.98 | 288.74 | 53.39 | 241.67 | ||||||||||||
7 | 65.68 | 234.29 | 82.84 | 297.97 | 88.19 | 317.69 | 46.48 | 256.30 | 45.21 | 265.32 | 50.71 | 280.94 | ||||||||||||
8 | 85.01 | 320.82 | 94.85 | 344.68 | 101.12 | 371.90 | 51.50 | 284.59 | 49.84 | 296.87 | 56.04 | 313.04 | ||||||||||||
| | | | | | | | | | | | | ||||||||||||
763 523 | 74.65 | 287.43 | 74.19 | 250.00 | 90.44 | 328.54 | 45.57 | 247.35 | 44.43 | 255.73 | 49.12 | 268.55 | ||||||||||||
763 524 | 84.50 | 320.30 | 94.15 | 343.70 | 100.20 | 344.99 | 46.54 | 254.70 | 45.17 | 264.92 | 50.62 | 278.54 | ||||||||||||
763 5251) | 72.53 | 271.17 | 82.16 | 291.84 | 87.64 | 313.34 | 49.95 | 282.24 | 48.69 | 295.42 | 54.64 | 313.19 | ||||||||||||
堵塞工况 (2020–09) | 65.11 | 283.77 | 73.20 | 308.77 | 80.95 | 336.86 | 42.43 | 277.54 | 41.40 | 290.77 | 45.33 | 299.80 | ||||||||||||
漏液工况 (2019–03) | 74.23 | 278.60 | 83.18 | 289.20 | 89.36 | 317.77 | 50.26 | 234.23 | 52.23 | 278.45 | 56.88 | 314.24 |
样本标识 | A浆液循环泵 | B浆液循环泵 | C浆液循环泵 | D浆液循环泵 | E浆液循环泵 | F浆液循环泵 | ||||||||||||||||||
Tix/% | Lix/% | Tix/% | Lix/% | Tix/% | Lix/% | Tix/% | Lix/% | Tix/% | Lix/% | Tix/% | Lix/% | |||||||||||||
1 | 50.97 | 49.15 | 52.05 | 48.21 | 49.96 | 50.03 | 44.84 | 54.53 | 44.58 | 54.84 | 43.80 | 55.44 | ||||||||||||
2 | 58.89 | 42.18 | 32.20 | 65.70 | 54.82 | 45.79 | 51.21 | 48.94 | 51.39 | 48.76 | 54.47 | 46.08 | ||||||||||||
3 | 53.80 | 46.67 | 50.01 | 49.99 | 52.11 | 48.16 | 52.19 | 48.07 | 53.91 | 46.51 | 54.98 | 45.62 | ||||||||||||
4 | 53.80 | 46.67 | 50.01 | 49.99 | 52.11 | 48.16 | 54.68 | 45.88 | 54.75 | 45.77 | 58.03 | 42.94 | ||||||||||||
5 | 47.63 | 52.08 | 39.61 | 59.10 | 49.60 | 50.35 | 56.10 | 44.63 | 56.18 | 44.49 | 59.09 | 42.00 | ||||||||||||
6 | 54.44 | 46.10 | 55.14 | 45.50 | 60.39 | 40.89 | 56.25 | 44.51 | 56.01 | 44.64 | 8.61 | 88.81 | ||||||||||||
7 | 33.83 | 64.30 | 50.96 | 49.16 | 51.55 | 48.65 | 49.71 | 50.25 | 48.15 | 51.65 | 51.53 | 48.66 | ||||||||||||
8 | 51.35 | 48.82 | 54.56 | 46.02 | 58.61 | 42.46 | 50.39 | 49.66 | 52.47 | 47.80 | 54.26 | 46.26 | ||||||||||||
| | | | | | | | | | | | | ||||||||||||
763 523 | 57.99 | 42.98 | 30.84 | 66.92 | 54.38 | 46.17 | 44.59 | 54.75 | 42.11 | 57.05 | 47.18 | 52.48 | ||||||||||||
763 524 | 52.80 | 47.54 | 56.06 | 44.70 | 37.30 | 61.16 | 47.24 | 52.43 | 47.95 | 51.83 | 49.29 | 50.63 | ||||||||||||
763 525 | 48.27 | 51.52 | 46.81 | 52.78 | 49.05 | 50.83 | 57.75 | 43.18 | 58.60 | 42.33 | 62.70 | 38.80 | ||||||||||||
堵塞工况 (2020–09) | 89.13 | 13.64 | 91.09 | 11.62 | 89.29 | 13.56 | 91.99 | 10.50 | 92.29 | 9.82 | 93.26 | 9.07 | ||||||||||||
漏液工况 (2019–03) | 49.54 | 50.41 | 40.01 | 58.75 | 47.30 | 52.36 | 11.40 | 85.81 | 21.69 | 75.81 | 50.60 | 49.48 |
表 3 各浆液循环泵对应喷淋管及喷淋层的堵塞与漏液概率
Table 3 Blockage and liquid leakage probability of spray main pipe and spray layer corresponding to each slurry circulating pump
样本标识 | A浆液循环泵 | B浆液循环泵 | C浆液循环泵 | D浆液循环泵 | E浆液循环泵 | F浆液循环泵 | ||||||||||||||||||
Tix/% | Lix/% | Tix/% | Lix/% | Tix/% | Lix/% | Tix/% | Lix/% | Tix/% | Lix/% | Tix/% | Lix/% | |||||||||||||
1 | 50.97 | 49.15 | 52.05 | 48.21 | 49.96 | 50.03 | 44.84 | 54.53 | 44.58 | 54.84 | 43.80 | 55.44 | ||||||||||||
2 | 58.89 | 42.18 | 32.20 | 65.70 | 54.82 | 45.79 | 51.21 | 48.94 | 51.39 | 48.76 | 54.47 | 46.08 | ||||||||||||
3 | 53.80 | 46.67 | 50.01 | 49.99 | 52.11 | 48.16 | 52.19 | 48.07 | 53.91 | 46.51 | 54.98 | 45.62 | ||||||||||||
4 | 53.80 | 46.67 | 50.01 | 49.99 | 52.11 | 48.16 | 54.68 | 45.88 | 54.75 | 45.77 | 58.03 | 42.94 | ||||||||||||
5 | 47.63 | 52.08 | 39.61 | 59.10 | 49.60 | 50.35 | 56.10 | 44.63 | 56.18 | 44.49 | 59.09 | 42.00 | ||||||||||||
6 | 54.44 | 46.10 | 55.14 | 45.50 | 60.39 | 40.89 | 56.25 | 44.51 | 56.01 | 44.64 | 8.61 | 88.81 | ||||||||||||
7 | 33.83 | 64.30 | 50.96 | 49.16 | 51.55 | 48.65 | 49.71 | 50.25 | 48.15 | 51.65 | 51.53 | 48.66 | ||||||||||||
8 | 51.35 | 48.82 | 54.56 | 46.02 | 58.61 | 42.46 | 50.39 | 49.66 | 52.47 | 47.80 | 54.26 | 46.26 | ||||||||||||
| | | | | | | | | | | | | ||||||||||||
763 523 | 57.99 | 42.98 | 30.84 | 66.92 | 54.38 | 46.17 | 44.59 | 54.75 | 42.11 | 57.05 | 47.18 | 52.48 | ||||||||||||
763 524 | 52.80 | 47.54 | 56.06 | 44.70 | 37.30 | 61.16 | 47.24 | 52.43 | 47.95 | 51.83 | 49.29 | 50.63 | ||||||||||||
763 525 | 48.27 | 51.52 | 46.81 | 52.78 | 49.05 | 50.83 | 57.75 | 43.18 | 58.60 | 42.33 | 62.70 | 38.80 | ||||||||||||
堵塞工况 (2020–09) | 89.13 | 13.64 | 91.09 | 11.62 | 89.29 | 13.56 | 91.99 | 10.50 | 92.29 | 9.82 | 93.26 | 9.07 | ||||||||||||
漏液工况 (2019–03) | 49.54 | 50.41 | 40.01 | 58.75 | 47.30 | 52.36 | 11.40 | 85.81 | 21.69 | 75.81 | 50.60 | 49.48 |
机组 | 数据来源 | 离子摩尔浓度/(mol·L–1) | 过饱和度 | |||||||||
Cl– | Mg2+ | | Ca2+ | |||||||||
案例实验 | 1 | 0.282 3 | 0.180 0 | 0.071 1 | 0.035 7 | 1.1300 | ||||||
2 | 0.245 7 | 0.135 1 | 0.093 3 | 0.031 8 | 1.0800 | |||||||
文献验证 | 文献 | 0.072 8 | 0.027 0 | 0.027 1 | 0.032 1 | 1.2400 | ||||||
公式计算 | 0.072 8 | 0.027 0 | 0.027 1 | 0.032 1 | 1.2700 |
表 4 脱硫浆液石膏过饱和度计算
Table 4 Calculation of gypsum supersaturation of desulfurization slurry
机组 | 数据来源 | 离子摩尔浓度/(mol·L–1) | 过饱和度 | |||||||||
Cl– | Mg2+ | | Ca2+ | |||||||||
案例实验 | 1 | 0.282 3 | 0.180 0 | 0.071 1 | 0.035 7 | 1.1300 | ||||||
2 | 0.245 7 | 0.135 1 | 0.093 3 | 0.031 8 | 1.0800 | |||||||
文献验证 | 文献 | 0.072 8 | 0.027 0 | 0.027 1 | 0.032 1 | 1.2400 | ||||||
公式计算 | 0.072 8 | 0.027 0 | 0.027 1 | 0.032 1 | 1.2700 |
1 | 张志勇, 莫华, 王猛, 等. 600MW燃煤机组烟气污染物控制研究[J]. 中国电力, 2022, 55 (5): 204- 210. |
ZHANG Zhiyong, MO Hua, WANG Meng, et al. Study of flue gas pollutant control in a 600 MW coal-fired unit[J]. Electric Power, 2022, 55 (5): 204- 210. | |
2 |
禾志强, 周鹏, 张铭, 等. 有机酸添加剂在石灰石–石膏法脱硫中应用的试验研究[J]. 中国电机工程学报, 2011, 31 (23): 34- 40.
DOI |
HE Zhiqiang, ZHOU Peng, ZHANG Ming, et al. Experimental study of the application of organic acids on lmiestone-gypsum desulfurization[J]. Proceedings of the CSEE, 2011, 31 (23): 34- 40.
DOI |
|
3 | LIM J H, CHO H T, LIM J. Optimization of wet flue gas desulfurization system using recycled waste oyster shell as high-grade limestone substitutes[J]. Journal of Cleaner Production, 2021, 318, 1- 15. |
4 |
曲江源, 齐娜娜, 关彦军, 等. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70 (6): 2117- 2128.
DOI |
QU Jiangyuan, QI Nana, GUAN Yanjun, et al. CFD simulation of transfer and chemical reaction process in wet flue gas desulfurization tower[J]. CIESC Journal, 2019, 70 (6): 2117- 2128.
DOI |
|
5 | 侯建勇, 严芳, 王浩, 等. 基于因果-模糊层次分析的湿法脱硫系统运行稳定性综合评价[J]. 化工进展, 2022, 41 (2): 569- 583. |
HOU Jianyong, YAN Fang, WANG Hao, et al. Comprehensive evaluation of operation stability of wet desulfurization system based on causal-fuzzy AHP[J]. Chemical Industry and Engineering Progress, 2022, 41 (2): 569- 583. | |
6 |
曹国庆, 邢金城, 涂光备. 基于灰色层次分析理论的烟气脱硫技术评价方法[J]. 中国电机工程学报, 2006, 26 (4): 51- 55.
DOI |
CAO Guoqing, XING Jincheng, TU Guangbei. Grey method with use of an analytic hierarchy process for performance evaluation of flue gas desulfurization technology[J]. Proceedings of the CSEE, 2006, 26 (4): 51- 55.
DOI |
|
7 | 马双忱, 周权, 曹建宗, 等. 湿法脱硫系统动态过程建模与仿真[J]. 化工学报, 2020, 71 (8): 3741- 3751. |
MA Shuangchen, ZHOU Quan, CAO Jianzong, et al. Modeling and simulation of wet desulfurization system dynamic process[J]. CIESC Jorunal, 2020, 71 (8): 3741- 3751. | |
8 | 吴磊, 康英伟. 基于改进粒子群优化长短时记忆神经网络的脱硫系统SO2预测模型 [J]. 热力发电, 2021, 50 (12): 66- 73. |
WU Lei, KANG Yingwei. Prediction model of SO2 concentration in desulfurization system based on improved particle swarm optimization LSTM [J]. Thermal Power Generation, 2021, 50 (12): 66- 73. | |
9 |
许丹, 沈凯, 张亚平, 等. 基于模糊理论的湿法脱硫故障诊断和优化模型研究[J]. 环境工程, 2018, 36 (2): 92- 97.
DOI |
XU Dan, SHEN Kai, ZHANG Yaping, et al. Study on fault diagnosis and operation optimization models of WFGD based on fuzzy theory[J]. Environmental Engineering, 2018, 36 (2): 92- 97.
DOI |
|
10 |
张锦航, 乔宗良, 司风琪. 基于模糊理论的脱硫系统故障诊断[J]. 工业控制计算机, 2021, 34 (9): 92- 96.
DOI |
ZHANG Jinhang, QIAO Zongliang, SI Fengqi. Fault diagnosis of desulfurization system based on fuzzy theory[J]. Industrial Control Computer, 2021, 34 (9): 92- 96.
DOI |
|
11 | 徐遵义, 刘文慧, 张旭冉, 等. 基于数据驱动的浆液循环泵运行优化研究[J]. 中国电力, 2021, 54 (3): 197- 204. |
XU Zunyi, LIU Wenhui, ZHANG Xuran, et al. Research on data-driven optimal operation of slurry circulation pump[J]. Electric Power, 2021, 54 (3): 197- 204. | |
12 |
范昊鹏, 夏凤毅, 包军宇, 等. 基于PFC预测的燃煤机组脱硫优化控制[J]. 动力工程学报, 2020, 40 (10): 808- 814.
DOI |
FAN Haopeng, XIA Fengyi, BAO Junyu, et al. Optimized control for desulphurization of coal-fired units based on PFC prediction[J]. Journal of Chinese Society of Power Engineering, 2020, 40 (10): 808- 814.
DOI |
|
13 |
GU H, CUI Y F, ZHU H X, et al. A new approach for clustering in desulfurization system based on modified framework for gypsum slurry quality monitoring[J]. Energy, 2018, 148, 789- 801.
DOI |
14 | 贾西部, 金万元, 李兴华, 等. 石灰石-石膏湿法烟气脱硫系统浆液起泡原因分析[J]. 中国电力, 2015, 48 (9): 157- 160. |
JIA Xibu, JIN Wanyuan, LI Xinghua, et al. Cause analysis on slurry foaming in wet limestone-gypsum flue gas desulfurization system[J]. Electric Power, 2015, 48 (9): 157- 160. | |
15 | 董锐锋, 陈浩军, 王锋涛, 等. 单塔双循环脱硫系统结垢问题研究[J]. 中国电力, 2018, 51 (4): 149- 154. |
DONG Ruifeng, CHEN Haojun, WANG Fengtao, et al. Research on scale problem of single tower with dual loop desulfurization system[J]. Electric Power, 2018, 51 (4): 149- 154. | |
16 | 薛建明, 王小明, 刘建民, 等. 湿法烟气脱硫设计及设备选型手册[M]. 北京: 中国电力出版社, 2011: 133–139. |
17 |
石少晴, 余琬冰, 蒋惠梦, 等. 湿法脱硫系统中二水硫酸钙结晶特性分析[J]. 环境工程, 2019, 37 (3): 104- 108.
DOI |
SHI Shaoqing, YU Wanbing, JIANG Huimeng, et al. Study on crystalline properties of calcium sulfate dihydrate in wet desulfurization system[J]. Environmental Engineering, 2019, 37 (3): 104- 108.
DOI |
|
18 | 赖富国, 高国华, 肖燕飞, 等. 氯-硫酸盐体系下硫酸钙溶解度相图的研究进展[J]. 无机盐工业, 2018, 50 (8): 16- 21. |
LAI Fuguo, GAO Guohua, XIAO Yanfei, et al. Research progress on solubility phase diagrams of calcium sulfate in chloride-sulfate solutions[J]. Inorganic Chemicals Industry, 2018, 50 (8): 16- 21. | |
19 | YU B J, MIAO S S, ZHANG Y J, et al. Determination and analysis of the solubility of CaSO4·2H2O and αCaSO4·0.5H2O in formamide aqueous solutions at T = 303.15–363.15 K [J]. Journal of Chemical & Engineering Data, 2020, 65 (9): 4395- 4405. |
20 | 张飞宇. 湿法烟气脱硫石膏成核与结晶特性研究[D]. 北京: 华北电力大学, 2021. |
ZHANG Feiyu. Study on nucleation and crystallization characteristics of wet flue gas desulfurization gypsum[D]. Beijing: North China Electric Power University, 2021. | |
21 | OSTROFF A G, METLER A V. Solubility of calcium sulfate dihydrate in the system NaCl-MgCl2-H2O from 28 ℃ to 70 ℃ [J]. Journal of Chemical & Engineering Data, 1966, 11 (3): 346- 350. |
22 | 岳春妹, 陶雷行, 陈洪涛, 等. 脱硫浆液硫酸钙过饱和度的研究[J]. 华东电力, 2012, 40 (6): 1082- 1084. |
YUE Chunmei, TAO Leixing, CHEN Hongtao, et al. Supersaturation of calcium sulfate dihydrate in desulfurization slurry[J]. East China Electric Power, 2012, 40 (6): 1082- 1084. | |
23 |
崔仕文, 铁治欣, 丁成富, 等. 基于偏最小二乘支持向量机的烟气湿法脱硫效率预测模型[J]. 热力发电, 2017, 46 (4): 81- 87.
DOI |
CUI Shiwen, TIE Zhixin, DING Chengfu, et al. Prediction model for flue gas wet desulfurization efficiency based on partial least squares support vector machine[J]. Thermal Power Generation, 2017, 46 (4): 81- 87.
DOI |
|
24 | 齐年哲. 石灰石-石膏湿法烟气脱硫效率的软测量技术[D]. 北京: 华北电力大学, 2013. |
QI Nianzhe. Soft sensing technology of limestone-gypsum wet flue gas desulfurization efficiency[D]. Beijing: North China Electric Power University, 2013. | |
25 |
ZHAO Z Y, ZHANG Y X, GAO W C, et al. Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system [J]. Process Safety and Environmental Protection, 2021, 150, 453- 463.
DOI |
26 |
JIANG L, QIU Y L, LI Y. Effect analysis of quantum chemical descriptors and substituent characteristics on Henry's law constants of polybrominated diphenyl ethers at different temperatures[J]. Ecotoxicology and Environmental Safety, 2017, 145, 176- 183.
DOI |
27 | 宋炎. 脱硫浆液组成变化对起泡影响机理研究[D]. 淮南: 安徽理工大学, 2018. |
SONG Yan. Study on the influence mechanism of desulfurization slurry composition change on foaming[D]. Huainan: Anhui University of Science & Technology, 2018. | |
28 |
JIANG L, LI Y. Modification of PBDEs (BDE-15, BDE-47, BDE-85 and BDE-126) biological toxicity, bio-concentration, persistence and atmospheric long-range transport potential based on the pharmacophore modeling assistant with the full factor experimental design[J]. Journal of Hazardous Materials, 2016, 307, 202- 212.
DOI |
[1] | 徐遵义, 刘文慧, 张旭冉, 张海燕. 基于数据驱动的浆液循环泵运行优化研究[J]. 中国电力, 2021, 54(3): 197-204. |
[2] | 刘文慧, 徐遵义, 张旭冉, 张海燕. 基于互信息和PCA理论的湿法烟气脱硫工况特征提取方法[J]. 中国电力, 2020, 53(8): 158-163. |
[3] | 薛明华, 夏多兵, 胡子健, 田昌, 苏明旭. 基于超声波衰减谱的石膏浆液粒度测量方法[J]. 中国电力, 2019, 52(9): 173-178. |
[4] | 姚森敬, 文正其, 张林, 吕启深. 一种变压器状态评估中的状态量优选方法[J]. 中国电力, 2014, 47(8): 8-12. |
[5] | 彭志峰, 杨明玉. 基于变权理论的继电保护状态评价方法[J]. 中国电力, 2014, 47(4): 92-96. |
[6] | 郭彦鹏, 潘丹萍, 杨林军. 湿法烟气脱硫中石膏雨的形成及其控制措施[J]. 中国电力, 2014, 47(3): 152-154. |
[7] | 王良毅, 张继红, 曾治安, 余红欣, 郑晓玲. 随机失效指标在继电保护状态评价中的研究与应用[J]. 中国电力, 2013, 46(7): 87-90. |
[8] | 吴明祥, 欧阳本红, 李文杰. 交联电缆常见故障及原因分析[J]. 中国电力, 2013, 46(5): 66-70. |
[9] | 梁磊. 火电厂脱硫系统石膏脱水困难案例分析及对策[J]. 中国电力, 2013, 46(1): 99-102. |
[10] | 吴姜, 王奕, 王仁民. 电气二次设备风险量化评估体系设计[J]. 中国电力, 2013, 46(1): 75-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||