中国电力 ›› 2023, Vol. 56 ›› Issue (12): 206-216.DOI: 10.11930/j.issn.1004-9649.202211098
邹念1(), 魏梅芳2(
), 苏盛1(
), 郑应俊1(
), 周文晴1
收稿日期:
2022-11-28
接受日期:
2023-04-27
出版日期:
2023-12-28
发布日期:
2023-12-28
作者简介:
邹念(1999—),男,硕士研究生,从事用电数据挖掘分析利用,E-mail: 873685903@qq.com基金资助:
Nian ZOU1(), Meifang WEI2(
), Sheng SU1(
), Yingjun ZHENG1(
), Wenqing ZHOU1
Received:
2022-11-28
Accepted:
2023-04-27
Online:
2023-12-28
Published:
2023-12-28
Supported by:
摘要:
低压居民窃电用户中的零电量用户,不能提供用户用电行为的有效信息,又容易与空置房用户混淆,是窃电检测中的一类特殊问题。利用居民用户用水、用电数据之间具有强关联性的特点,提出基于水、电关联信息的零电量用户窃电检测。首先,分析居民用户用电、用水数据间的关联关系;然后,构建用户日用电量与日用水量的最大互信息模型,计算不同时间尺度下的最大互信息系数来衡量其信息相关度;接着,对用户的最大互信息系数进行聚类,将显著偏离类簇的样本识别为水电量具有弱相关性的窃电嫌疑用户,当窃电嫌疑用户的用电量为零时即为零电量窃电用户;2个台区的测试算例表明:所提方法可有效检出零电量窃电用户,指导现场窃电检测工作。
邹念, 魏梅芳, 苏盛, 郑应俊, 周文晴. 基于水电关联信息的零电量低压用户窃电检测[J]. 中国电力, 2023, 56(12): 206-216.
Nian ZOU, Meifang WEI, Sheng SU, Yingjun ZHENG, Wenqing ZHOU. Detection of Electricity Theft by Low Voltage Users with Zero Power Consumption Based on Water-Electricity Correlation Information[J]. Electric Power, 2023, 56(12): 206-216.
检测 时长T/天 | 检测结果(异常 用户1~5的个数) | 检测 时长T/天 | 检测结果(异常 用户1~5的个数) | |||
15 | 3 | 30 | 5 | |||
20 | 5 | 35 | 5 | |||
25 | 5 | 40 | 4 |
表 1 Q=20%时各种滑窗区间下的小波聚类结果
Table 1 Wavelet clustering results under various sliding window intervals when Q=20%
检测 时长T/天 | 检测结果(异常 用户1~5的个数) | 检测 时长T/天 | 检测结果(异常 用户1~5的个数) | |||
15 | 3 | 30 | 5 | |||
20 | 5 | 35 | 5 | |||
25 | 5 | 40 | 4 |
Q/% | 检测结果(异常 用户1~5的个数) | 误检 个数 | Q/% | 检测结果(异常 用户1~5的个数) | 误检 个数 | |||||
20 | 2 | 2 | 60 | 5 | 0 | |||||
30 | 4 | 5 | 80 | 5 | 0 | |||||
40 | 5 | 0 | 100 | 5 | 0 |
表 2 仅有用电数据的小波聚类结果
Table 2 Wavelet clustering results with only electricity consumption data
Q/% | 检测结果(异常 用户1~5的个数) | 误检 个数 | Q/% | 检测结果(异常 用户1~5的个数) | 误检 个数 | |||||
20 | 2 | 2 | 60 | 5 | 0 | |||||
30 | 4 | 5 | 80 | 5 | 0 | |||||
40 | 5 | 0 | 100 | 5 | 0 |
检测时长T/天 | 检测结果(异常用户1~5的个数) | |||||||||
Q=20% | Q=40% | Q=60% | Q=80% | Q=100% | ||||||
15 | 3 | 5 | 5 | 5 | 5 | |||||
20 | 5 | 5 | 5 | 5 | 5 | |||||
25 | 5 | 5 | 5 | 5 | 5 | |||||
30 | 5 | 5 | 5 | 5 | 5 | |||||
35 | 5 | 5 | 5 | 5 | 5 | |||||
40 | 4 | 5 | 5 | 5 | 5 |
表 3 各种零电量时长比例下的检测结果
Table 3 Test results under various zero-power duration ratios
检测时长T/天 | 检测结果(异常用户1~5的个数) | |||||||||
Q=20% | Q=40% | Q=60% | Q=80% | Q=100% | ||||||
15 | 3 | 5 | 5 | 5 | 5 | |||||
20 | 5 | 5 | 5 | 5 | 5 | |||||
25 | 5 | 5 | 5 | 5 | 5 | |||||
30 | 5 | 5 | 5 | 5 | 5 | |||||
35 | 5 | 5 | 5 | 5 | 5 | |||||
40 | 4 | 5 | 5 | 5 | 5 |
图 9 高损台区2日用水电量的最大信息系数曲线
Fig.9 Maximum information coefficient curve of daily water and electricity consumption in 2# high power-loss distribution area
假设 | 显著性水平 | |
线损电量不是用户7的格兰杰原因 | 0.2414 | |
用户7不是线损电量的格兰杰原因 | 0.3008 | |
线损电量不是用户29的格兰杰原因 | 0.3559 | |
用户29不是线损电量的格兰杰原因 | 0.0385 |
表 4 高损台区2线损电量与用电量的格兰杰检验结果
Table 4 Granger test results of line loss and electricity consumption in 2# high power-loss distribution area
假设 | 显著性水平 | |
线损电量不是用户7的格兰杰原因 | 0.2414 | |
用户7不是线损电量的格兰杰原因 | 0.3008 | |
线损电量不是用户29的格兰杰原因 | 0.3559 | |
用户29不是线损电量的格兰杰原因 | 0.0385 |
1 |
ZHENG Z B, YANG Y T, NIU X D, et al. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (4): 1606- 1615.
DOI |
2 |
殷涛, 薛阳, 杨艺宁, 等. 基于向量自回归模型的高损线路窃电检测[J]. 中国电机工程学报, 2022, 42 (3): 1015- 1024.
DOI |
YIN Tao, XUE Yang, YANG Yining, et al. Electricity theft detection of high-loss line with vector autoregression[J]. Proceedings of the CSEE, 2022, 42 (3): 1015- 1024.
DOI |
|
3 |
段俊峰, 李宁, 唐求, 等. 基于CK-GPR的多应力环境智能电表剩余寿命预测[J]. 仪器仪表学报, 2021, 42 (4): 102- 110.
DOI |
DUAN Junfeng, LI Ning, TANG Qiu, et al. Remaining useful life prediction of smart meter based on CK-GPR in multi-stress environment[J]. Chinese Journal of Scientific Instrument, 2021, 42 (4): 102- 110.
DOI |
|
4 |
滕伟, 黄乙珂, 吴仕明, 等. 基于XGBoost与LSTM的风力发电机绕组温度预测[J]. 中国电力, 2021, 54 (6): 95- 103.
DOI |
TENG Wei, HUANG Yike, WU Shiming, et al. Wind turbine generator winding temperature prediction based on XGBoost and LSTM[J]. Electric Power, 2021, 54 (6): 95- 103.
DOI |
|
5 |
陈启鑫, 郑可迪, 康重庆, 等. 异常用电的检测方法: 评述与展望[J]. 电力系统自动化, 2018, 42 (17): 189- 199.
DOI |
CHEN Qixin, ZHENG Kedi, KANG Chongqing, et al. Detection methods of abnormal electricity consumption behaviors: review and prospect[J]. Automation of Electric Power Systems, 2018, 42 (17): 189- 199.
DOI |
|
6 |
杨艺宁, 薛阳, 徐英辉, 等. 基于行业特性的路灯用电异常检测方法[J]. 电力科学与技术学报, 2021, 36 (3): 165- 173.
DOI |
YANG Yining, XUE Yang, XU Yinghui, et al. Sector electricity consumption behavior features based abnormal electricity consumption detection method for street lamps[J]. Journal of Electric Power Science and Technology, 2021, 36 (3): 165- 173.
DOI |
|
7 |
金晟, 苏盛, 曹一家, 等. 基于格兰杰归因分析的高损台区窃电检测[J]. 电力系统自动化, 2020, 44 (23): 82- 89.
DOI |
JIN Sheng, SU Sheng, CAO Yijia, et al. Electricity-theft detection for high-loss distribution area based on granger causality analysis[J]. Automation of Electric Power Systems, 2020, 44 (23): 82- 89.
DOI |
|
8 |
刘康, 李彬, 薛阳, 等. 基于传递熵密度聚类的用户窃电识别方法[J]. 中国电机工程学报, 2022, 42 (20): 7535- 7546.
DOI |
LIU Kang, LI Bin, XUE Yang, et al. User electric theft detection method based on transfer entropy density clustering[J]. Proceedings of the CSEE, 2022, 42 (20): 7535- 7546.
DOI |
|
9 |
唐冬来, 刘友波, 熊智临, 等. 基于时空关联矩阵的配电台区反窃电预警方法[J]. 电力系统自动化, 2020, 44 (19): 168- 176.
DOI |
TANG Donglai, LIU Youbo, XIONG Zhilin, et al. Early warning method of electricity anti-theft in distribution station area based on spatiotemporal correlation matrix[J]. Automation of Electric Power Systems, 2020, 44 (19): 168- 176.
DOI |
|
10 |
吴迪. 基于曲线相似性分析的窃电用户判断[J]. 中国电力, 2017, 50 (2): 181- 184.
DOI |
WU Di. Electricity theft identification method based on curve similarity[J]. Electric Power, 2017, 50 (2): 181- 184.
DOI |
|
11 |
ZHENG K D, CHEN Q X, WANG Y, et al. A novel combined data-driven approach for electricity theft detection[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (3): 1809- 1819.
DOI |
12 | 章博, 卢峰, 董寒宇, 等. 基于决策树和数据驱动的零电量用户筛选方法[J]. 山东大学学报(工学版), 2019, 49 (5): 29- 36. |
ZHANG Bo, LU Feng, DONG Hanyu, et al. None-consumption users filtering algorithm based on decision tree and data-driven methods[J]. Journal of Shandong University (Engineering Science), 2019, 49 (5): 29- 36. | |
13 | 金晟, 苏盛, 薛阳, 等. 数据驱动窃电检测方法综述与低误报率研究展望[J]. 电力系统自动化, 2022, 46 (1): 3- 14. |
JIN Sheng, SU Sheng, XUE Yang, et al. Review on data-driven based electricity theft detection method and research prospect for low false positive rate[J]. Automation of Electric Power Systems, 2022, 46 (1): 3- 14. | |
14 | 中国电力企业联合会. 电、水、气、热能源计量管理系统 第1部分: 总则: T/CEC 122.1—2016[S]. 2017. |
15 | 王新刚, 赵舫, 朱文君. 基于综合能源计量数据的区域用能特性分析[J]. 中国电力, 2022, 55 (9): 140- 145. |
WANG Xingang, ZHAO Fang, ZHU Wenjun. Pattern analysis of regional energy consumption based on integrated energy measurement data[J]. Electric Power, 2022, 55 (9): 140- 145. | |
16 | 黄瑞, 刘谋海, 陈向群, 等. 基于递阶结构的多表合一能源计量系统运行状态综合评价方法[J]. 电测与仪表, 2023, 60 (8): 187- 193. |
HUANG Rui, LIU Mouhai, CHEN Xiangqun, et al.. Comprehensive evaluation method of multi-meter integrated energy metering operating state based on hierarchical structure[J]. Electrical Measurement & Instrumentation, 2023, 60 (8): 187- 193. | |
17 | 孟燕霞. 最大信息系数算法研究[D]. 太原: 太原理工大学, 2019. |
MENG Yanxia. The maximal information coefficient algorithm research[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
18 | 王月. 最大信息系数的算法分析及改进[D]. 西安: 西安电子科技大学, 2019. |
WANG Yue. Algorithm analysis and improvement of the maximal information coefficient[D]. Xi'an: Xidian University, 2019. | |
19 |
赵雅雪, 王旭, 蒋传文, 等. 基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法[J]. 中国电机工程学报, 2021, 41 (1): 135- 146, 404.
DOI |
ZHAO Yaxue, WANG Xu, JIANG Chuanwen, et al. A novel short-term electricity price forecasting method based on correlation analysis with the maximal information coefficient and modified multi-hierachy gated LSTM[J]. Proceedings of the CSEE, 2021, 41 (1): 135- 146, 404.
DOI |
|
20 |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518- 1524.
DOI |
21 |
薛阳, 张宁, 吴海东, 等. 基于UTCI-MIC与振幅压缩灰色模型的用户侧微电网短期负荷预测方法[J]. 电网技术, 2020, 44 (2): 556- 563.
DOI |
XUE Yang, ZHANG Ning, WU Haidong, et al. Short-term load forecasting method for user side microgrid based on UTCI-MIC and amplitude compression grey model[J]. Power System Technology, 2020, 44 (2): 556- 563.
DOI |
|
22 |
孙广路, 宋智超, 刘金来, 等. 基于最大信息系数和近似马尔科夫毯的特征选择方法[J]. 自动化学报, 2017, 43 (5): 795- 805.
DOI |
SUN Guanglu, SONG Zhichao, LIU Jinlai, et al. Feature selection method based on maximum information coefficient and approximate Markov blanket[J]. Acta Automatica Sinica, 2017, 43 (5): 795- 805.
DOI |
|
23 |
刘晓波, 邵伟芹, 张明明, 等. 基于双网格校正小波聚类的转子故障诊断[J]. 计算机集成制造系统, 2017, 23 (9): 1883- 1890.
DOI |
LIU Xiaobo, SHAO Weiqin, ZHANG Mingming, et al. Rotor fault diagnosis based on double grid corrected wavecluster algorithm[J]. Computer Integrated Manufacturing Systems, 2017, 23 (9): 1883- 1890.
DOI |
|
24 |
沈沉, 秦建, 盛万兴, 等. 基于小波聚类的配变短期负荷预测方法研究[J]. 电网技术, 2016, 40 (2): 521- 526.
DOI |
SHEN Chen, QIN Jian, SHENG Wanxing, et al. Study on short-term forecasting of distribution transformer load using wavelet and clustering method[J]. Power System Technology, 2016, 40 (2): 521- 526.
DOI |
|
25 | 张明明. 基于双网格校正小波聚类的航空发动机转子系统振动故障诊断[D]. 南昌: 南昌航空大学, 2016. |
ZHANG Mingming. The aero engine rotor system's vibration fault diagnosis based on the double grid corrected wave cluster algorithm[D]. Nanchang: Nanchang Hangkong University, 2016. | |
26 | 左红艳, 刘晓波, 洪连环. 用于转子故障诊断的改进小波聚类算法[J]. 振动 测试与诊断, 2018, 38 (2): 320- 326, 420. |
ZUO Hongyan, LIU Xiaobo, HONG Lianhuan. Improved wave cluster method for rotor fault diagnosis[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38 (2): 320- 326, 420. |
[1] | 陶磊, 罗萍萍, 林济铿. 基于深度学习的直流微电网虚假数据注入攻击二阶段检测方法[J]. 中国电力, 2024, 57(9): 11-19. |
[2] | 王新刚, 赵舫, 朱文君. 基于综合能源计量数据的区域用能特性分析[J]. 中国电力, 2022, 55(9): 140-145. |
[3] | 吴迪. 基于曲线相似性分析的窃电用户判断[J]. 中国电力, 2017, 50(2): 181-184. |
[4] | 刘盛, 朱翠艳. 应用数据挖掘技术构建反窃电管理系统的研究[J]. 中国电力, 2017, 50(10): 181-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||