中国电力 ›› 2023, Vol. 56 ›› Issue (12): 206-216.DOI: 10.11930/j.issn.1004-9649.202211098

• 电网 • 上一篇    下一篇

基于水电关联信息的零电量低压用户窃电检测

邹念1(), 魏梅芳2(), 苏盛1(), 郑应俊1(), 周文晴1   

  1. 1. 长沙理工大学 电气与信息工程学院,湖南 长沙 410014
    2. 国网湖南省电力有限公司技术技能培训中心,湖南 长沙 410131
  • 收稿日期:2022-11-28 接受日期:2023-04-27 出版日期:2023-12-28 发布日期:2023-12-28
  • 作者简介:邹念(1999—),男,硕士研究生,从事用电数据挖掘分析利用,E-mail: 873685903@qq.com
    魏梅芳(1982—),女,硕士,副教授,从事电力营销服务研究,E-mail: weimf@cseptc.net
    苏盛(1975—),男,通信作者,博士,教授,从事配用电大数据应用、电力气象灾害和电力系统网络安全防护,E-mail: eessheng@163.com
    郑应俊(1997—)男,硕士研究生,从事用电数据挖掘分析利用研究,E-mail: 5226495@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51777015);湖南省自然科学基金资助项目(2022JJ60089)。

Detection of Electricity Theft by Low Voltage Users with Zero Power Consumption Based on Water-Electricity Correlation Information

Nian ZOU1(), Meifang WEI2(), Sheng SU1(), Yingjun ZHENG1(), Wenqing ZHOU1   

  1. 1. School of Electrical & Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
    2. Technical Skills Training Center of State Grid Hunan Electric Power Co., Ltd., Changsha 410131, China
  • Received:2022-11-28 Accepted:2023-04-27 Online:2023-12-28 Published:2023-12-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51777015) and Natural Science Foundation of Hunan Province (No.2022JJ60089).

摘要:

低压居民窃电用户中的零电量用户,不能提供用户用电行为的有效信息,又容易与空置房用户混淆,是窃电检测中的一类特殊问题。利用居民用户用水、用电数据之间具有强关联性的特点,提出基于水、电关联信息的零电量用户窃电检测。首先,分析居民用户用电、用水数据间的关联关系;然后,构建用户日用电量与日用水量的最大互信息模型,计算不同时间尺度下的最大互信息系数来衡量其信息相关度;接着,对用户的最大互信息系数进行聚类,将显著偏离类簇的样本识别为水电量具有弱相关性的窃电嫌疑用户,当窃电嫌疑用户的用电量为零时即为零电量窃电用户;2个台区的测试算例表明:所提方法可有效检出零电量窃电用户,指导现场窃电检测工作。

关键词: 多表合一, 零电量用户, 窃电, 水电使用行为, 最大互信息系数, 小波聚类

Abstract:

It is hard to obtain the effective information on electricity consumption behaviors of zero-power consumption users among low-voltage residential electricity theft users who are easily confused with vacant house owners, which is a special problem for electricity theft detection. Based on the strong correlation between water and electricity data of residential users, a zero-power user electricity theft detection method is proposed based on water-electricity correlation information. Firstly, the relationship between electricity and water consumption data of residential users is analyzed. Then, a maximal information model of users' daily electricity consumption and daily water consumption is constructed, and the maximum information coefficient (MIC) at different time scales is calculated to measure the information correlation. Thirdly, the user's maximal information coefficient is clustered, and the samples that deviate significantly from the cluster are identified as the suspected electricity theft users with weak water-electricity correlation. When the electricity consumption of the suspected electricity theft users is zero, they are identified as the electricity theft users with zero power consumption. The test examples of two distribution areas show that the proposed method can effectively detect the electricity theft users with zero power consumption and guide the on-site electricity theft detection work.

Key words: multi-meter unification, zero power consumption users, electricity theft, water and electricity consumption behavior, maximal information coefficient, wavelet clustering