中国电力 ›› 2026, Vol. 59 ›› Issue (1): 163-174.DOI: 10.11930/j.issn.1004-9649.202507050
• 新型电网 • 上一篇
张玉敏1(
), 王德龙1(
), 张晓1(
), 吉兴全1, 张祥星2, 黄心月1, 王学林3
收稿日期:2025-07-18
修回日期:2025-09-08
发布日期:2026-01-13
出版日期:2026-01-28
作者简介:基金资助:
ZHANG Yumin1(
), WANG Delong1(
), ZHANG Xiao1(
), JI Xingquan1, ZHANG Xiangxing2, HUANG Xinyue1, WANG Xuelin3
Received:2025-07-18
Revised:2025-09-08
Online:2026-01-13
Published:2026-01-28
Supported by:摘要:
针对多分支配电网故障定位在微弱故障条件下故障特征提取困难的问题,提出了基于多维故障特征提取的卷积神经网络(convolution neural network,CNN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)-注意力机制(attention mechanism,ATT)多分支配电网故障定位方法。首先,分析不同故障位置和故障分支的行波特性,采用基于直线检测(line segment detector,LSD)的波头标定方法提取故障波头的坐标、幅值和斜率等信息,利用主成分分析法(principal component analysis,PCA)构造与故障位置成映射关系的多维故障特征空间;其次,构建CNN-BiGRU-ATT故障定位模型,深入挖掘时序特征和幅值特征与故障位置之间的关联;最后,结合分类与回归任务,分别实现故障区段定位与精准定位。在有限样本的情况下,区段定位准确率达
张玉敏, 王德龙, 张晓, 吉兴全, 张祥星, 黄心月, 王学林. 基于多维故障特征提取的CNN-BiGRU-ATT多分支配电网故障定位[J]. 中国电力, 2026, 59(1): 163-174.
ZHANG Yumin, WANG Delong, ZHANG Xiao, JI Xingquan, ZHANG Xiangxing, HUANG Xinyue, WANG Xuelin. CNN-BiGRU-ATT multi-branched distribution network fault location based on multi-dimensional fault feature extraction[J]. Electric Power, 2026, 59(1): 163-174.
| 参数 | 类别 |
| 故障类型 | 单相接地、两相接地、两相短路、三相短路 |
| 过渡电阻/Ω | 10、100、500、800、1 000 |
表 1 不同故障点的参数设置
Table 1 Parameter setting of different fault points
| 参数 | 类别 |
| 故障类型 | 单相接地、两相接地、两相短路、三相短路 |
| 过渡电阻/Ω | 10、100、500、800、1 000 |
| 层类型 | 输出维度 | 内核大小/神经 元数/单元 |
| 输入层 | 5×5×3 | — |
| 折叠层 | 75×1×1 | — |
| 卷积层+RELU激活层 | 73×64×1 | 3×1内核 |
| 卷积层+RELU激活层 | 71×128×1 | 3×1内核 |
| 全局平均池化层 | 1×128×1 | — |
| 全连接层+ReLU激活层 | 16×1 | 16神经元 |
| 全连接层+Sigmoid激活层 | 128×1 | 128神经元 |
| 乘法层+展平层 | 71×128 | — |
| GRU层(正向)+GRU层(反向) | 4×1 | 4隐藏单元 |
| 拼接层 | 8×1 | — |
| 全连接层(分类)+Softmax层 | 7×1 | 7 |
| 分类输出层 | 7×1 | — |
表 2 支路故障定位模型参数
Table 2 Branch fault location model parameters
| 层类型 | 输出维度 | 内核大小/神经 元数/单元 |
| 输入层 | 5×5×3 | — |
| 折叠层 | 75×1×1 | — |
| 卷积层+RELU激活层 | 73×64×1 | 3×1内核 |
| 卷积层+RELU激活层 | 71×128×1 | 3×1内核 |
| 全局平均池化层 | 1×128×1 | — |
| 全连接层+ReLU激活层 | 16×1 | 16神经元 |
| 全连接层+Sigmoid激活层 | 128×1 | 128神经元 |
| 乘法层+展平层 | 71×128 | — |
| GRU层(正向)+GRU层(反向) | 4×1 | 4隐藏单元 |
| 拼接层 | 8×1 | — |
| 全连接层(分类)+Softmax层 | 7×1 | 7 |
| 分类输出层 | 7×1 | — |
| 层类型 | 输出维度 | 内核大小/神经 元数/单元 |
| 输入层 | 76×1 | — |
| 折叠层 | 76×1×1 | — |
| 卷积层+RELU激活层 | 74×64×1 | 3×1内核 |
| 卷积层+RELU激活层 | 72×128×1 | 3×1内核 |
| 全局平均池化层 | 1×128×1 | — |
| 全连接层+ReLU激活层 | 16×1 | 16神经元 |
| 全连接层+Sigmoid激活层 | 128×1 | 128神经元 |
| 乘法层+展平层 | 72×128 | — |
| GRU层(正向)+GRU层(反向) | 4×1 | 4隐藏单元 |
| 拼接层 | 8×1 | — |
| 全连接层(回归)+Softmax层 | 1×1 | 7 |
| 回归输出层 | 1×1 | — |
表 3 故障精准定位模型参数
Table 3 Accurate fault location model parameters
| 层类型 | 输出维度 | 内核大小/神经 元数/单元 |
| 输入层 | 76×1 | — |
| 折叠层 | 76×1×1 | — |
| 卷积层+RELU激活层 | 74×64×1 | 3×1内核 |
| 卷积层+RELU激活层 | 72×128×1 | 3×1内核 |
| 全局平均池化层 | 1×128×1 | — |
| 全连接层+ReLU激活层 | 16×1 | 16神经元 |
| 全连接层+Sigmoid激活层 | 128×1 | 128神经元 |
| 乘法层+展平层 | 72×128 | — |
| GRU层(正向)+GRU层(反向) | 4×1 | 4隐藏单元 |
| 拼接层 | 8×1 | — |
| 全连接层(回归)+Softmax层 | 1×1 | 7 |
| 回归输出层 | 1×1 | — |
| 真实结果 | 预测结果 | |
| 正类 | 负类 | |
| 正类 | TP(真正类) | FN(假负类) |
| 负类 | FP(假正类) | TN(真负类) |
表 4 二分类混淆矩阵
Table 4 Confusion matrix for binary classification
| 真实结果 | 预测结果 | |
| 正类 | 负类 | |
| 正类 | TP(真正类) | FN(假负类) |
| 负类 | FP(假正类) | TN(真负类) |
| 模型 | RMSE/m | MAE/m | R2 |
| CNN-LSTM-ATT | 168.958 6 | 126.336 4 | 0.985 9 |
| CNN-GRU-ATT | 154.174 2 | 115.609 5 | 0.988 3 |
| CNN-BiLSTM-ATT | 133.790 9 | 94.974 1 | 0.991 2 |
| CNN-BiGRU-ATT | 78.643 3 | 55.766 9 | 0.996 9 |
表 5 各模型定位精度对比
Table 5 Comparison of location accuracy among various models
| 模型 | RMSE/m | MAE/m | R2 |
| CNN-LSTM-ATT | 168.958 6 | 126.336 4 | 0.985 9 |
| CNN-GRU-ATT | 154.174 2 | 115.609 5 | 0.988 3 |
| CNN-BiLSTM-ATT | 133.790 9 | 94.974 1 | 0.991 2 |
| CNN-BiGRU-ATT | 78.643 3 | 55.766 9 | 0.996 9 |
| 定位模型 | 过渡电阻/ Ω | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | 10 | L5 | 333.85 | 216.15 |
| 100 | L5 | 328.59 | 221.41 | |
| 500 | L5 | 318.33 | 231.67 | |
| 800 | L5 | 318.33 | 177.10 | |
| 1 000 | L5 | 381.48 | 168.52 | |
| CNN-GRU-ATT | 10 | L5 | 268.26 | 281.74 |
| 100 | L5 | 303.99 | 246.01 | |
| 500 | L5 | 353.21 | 196.79 | |
| 800 | L5 | 353.17 | 196.83 | |
| 1 000 | L5 | 346.66 | 203.34 | |
| CNN-BiLSTM-ATT | 10 | L5 | 370.86 | 179.14 |
| 100 | L5 | 385.85 | 164.15 | |
| 500 | L5 | 556.17 | 6.17 | |
| 800 | L5 | 627.55 | 77.55 | |
| 1 000 | L5 | 640.78 | 90.78 | |
| CNN-BiGRU-ATT | 10 | L5 | 543.03 | 6.97 |
| 100 | L5 | 486.32 | 63.68 | |
| 500 | L5 | 556.40 | 6.40 | |
| 800 | L5 | 555.97 | 5.97 | |
| 1 000 | L5 | 569.36 | 19.36 |
表 6 不同过渡电阻下的4种定位模型结果对比
Table 6 Comparison of the results of four fault location models under different transition resistances
| 定位模型 | 过渡电阻/ Ω | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | 10 | L5 | 333.85 | 216.15 |
| 100 | L5 | 328.59 | 221.41 | |
| 500 | L5 | 318.33 | 231.67 | |
| 800 | L5 | 318.33 | 177.10 | |
| 1 000 | L5 | 381.48 | 168.52 | |
| CNN-GRU-ATT | 10 | L5 | 268.26 | 281.74 |
| 100 | L5 | 303.99 | 246.01 | |
| 500 | L5 | 353.21 | 196.79 | |
| 800 | L5 | 353.17 | 196.83 | |
| 1 000 | L5 | 346.66 | 203.34 | |
| CNN-BiLSTM-ATT | 10 | L5 | 370.86 | 179.14 |
| 100 | L5 | 385.85 | 164.15 | |
| 500 | L5 | 556.17 | 6.17 | |
| 800 | L5 | 627.55 | 77.55 | |
| 1 000 | L5 | 640.78 | 90.78 | |
| CNN-BiGRU-ATT | 10 | L5 | 543.03 | 6.97 |
| 100 | L5 | 486.32 | 63.68 | |
| 500 | L5 | 556.40 | 6.40 | |
| 800 | L5 | 555.97 | 5.97 | |
| 1 000 | L5 | 569.36 | 19.36 |
| 定位模型 | 初相角/ ° | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | 10 | L5 | 701.33 | 298.67 |
| 30 | L5 | 785.25 | 214.75 | |
| 60 | L5 | 801.85 | 198.15 | |
| 90 | L5 | 799.68 | 200.32 | |
| CNN-GRU-ATT | 10 | L5 | 783.36 | 216.64 |
| 30 | L5 | 899.68 | 100.32 | |
| 60 | L5 | 915.80 | 84.20 | |
| 90 | L5 | 916.13 | 83.87 | |
| CNN-BiLSTM-ATT | 10 | L5 | 926.64 | 73.36 |
| 30 | L5 | 1 027.77 | 27.77 | |
| 60 | L5 | 1 021.53 | 21.53 | |
| 90 | L5 | 1 006.42 | 6.42 | |
| CNN-BiGRU-ATT | 10 | L5 | 949.80 | 50.20 |
| 30 | L5 | 1 002.95 | 2.95 | |
| 60 | L5 | 978.94 | 21.06 | |
| 90 | L5 | 987.50 | 12.50 |
表 7 不同故障初相角下的4种定位模型结果对比
Table 7 Comparison of the results of four location models under different fault inception angles
| 定位模型 | 初相角/ ° | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | 10 | L5 | 701.33 | 298.67 |
| 30 | L5 | 785.25 | 214.75 | |
| 60 | L5 | 801.85 | 198.15 | |
| 90 | L5 | 799.68 | 200.32 | |
| CNN-GRU-ATT | 10 | L5 | 783.36 | 216.64 |
| 30 | L5 | 899.68 | 100.32 | |
| 60 | L5 | 915.80 | 84.20 | |
| 90 | L5 | 916.13 | 83.87 | |
| CNN-BiLSTM-ATT | 10 | L5 | 926.64 | 73.36 |
| 30 | L5 | 1 027.77 | 27.77 | |
| 60 | L5 | 1 021.53 | 21.53 | |
| 90 | L5 | 1 006.42 | 6.42 | |
| CNN-BiGRU-ATT | 10 | L5 | 949.80 | 50.20 |
| 30 | L5 | 1 002.95 | 2.95 | |
| 60 | L5 | 978.94 | 21.06 | |
| 90 | L5 | 987.50 | 12.50 |
| 定位模型 | 故障 类型 | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | Ag | L5 | 2 328.55 | 221.45 |
| AB | L5 | 2 342.43 | 207.57 | |
| ABg | L5 | 2 363.83 | 186.17 | |
| ABC | L5 | 2 387.12 | 162.88 | |
| CNN-GRU-ATT | Ag | L5 | 2 335.39 | 214.61 |
| AB | L5 | 2 393.28 | 156.72 | |
| ABg | L5 | 2 359.94 | 190.06 | |
| ABC | L5 | 2 431.44 | 118.56 | |
| CNN-BiLSTM-ATT | Ag | L5 | 2 438.86 | 111.14 |
| AB | L5 | 2 388.79 | 161.21 | |
| ABg | L5 | 2 390.79 | 159.21 | |
| ABC | L5 | 2 498.03 | 51.97 | |
| CNN-BiGRU-ATT | Ag | L5 | 2 541.27 | 8.73 |
| AB | L5 | 2 489.38 | 60.62 | |
| ABg | L5 | 2 500.36 | 49.64 | |
| ABC | L5 | 2 537.97 | 12.03 |
表 8 不同故障类型下的4种定位模型结果对比
Table 8 Comparison of the results of four location models under different fault types
| 定位模型 | 故障 类型 | 支路 识别 | 精准定位 结果/m | 精准定位 绝对误差/m |
| CNN-LSTM-ATT | Ag | L5 | 2 328.55 | 221.45 |
| AB | L5 | 2 342.43 | 207.57 | |
| ABg | L5 | 2 363.83 | 186.17 | |
| ABC | L5 | 2 387.12 | 162.88 | |
| CNN-GRU-ATT | Ag | L5 | 2 335.39 | 214.61 |
| AB | L5 | 2 393.28 | 156.72 | |
| ABg | L5 | 2 359.94 | 190.06 | |
| ABC | L5 | 2 431.44 | 118.56 | |
| CNN-BiLSTM-ATT | Ag | L5 | 2 438.86 | 111.14 |
| AB | L5 | 2 388.79 | 161.21 | |
| ABg | L5 | 2 390.79 | 159.21 | |
| ABC | L5 | 2 498.03 | 51.97 | |
| CNN-BiGRU-ATT | Ag | L5 | 2 541.27 | 8.73 |
| AB | L5 | 2 489.38 | 60.62 | |
| ABg | L5 | 2 500.36 | 49.64 | |
| ABC | L5 | 2 537.97 | 12.03 |
| 1 |
王宇杉, 王晨, 王淑侠, 等. 基于IWOA的配电网故障定位方法[J]. 智慧电力, 2024, 52 (11): 98- 105.
DOI |
|
WANG Yushan, WANG Chen, WANG Shuxia, et al. Fault location method for distribution network based on improved IWOA[J]. Smart Power, 2024, 52 (11): 98- 105.
DOI |
|
| 2 |
吉兴全, 张祥星, 张玉敏, 等. 基于LSD算法的多分支配电网故障定位[J]. 中国电力, 2025, 58 (9): 54- 67.
DOI |
|
JI Xingquan, ZHANG Xiangxing, ZHANG Yumin, et al. Multi-branch distribution network fault location based on LSD algorithm[J]. Electric Power, 2025, 58 (9): 54- 67.
DOI |
|
| 3 |
吴振杰, 胡晨, 陈海燕, 等. 基于双比例补偿系数的有源配电网电流差动保护[J]. 浙江电力, 2024, 43 (12): 104- 113.
DOI |
|
WU Zhenjie, HU Chen, CHEN Haiyan, et al. Differential current protection for active distribution networks with dual proportional compensation coefficients[J]. Zhejiang Electric Power, 2024, 43 (12): 104- 113.
DOI |
|
| 4 |
何宇宁, 王自主, 乔依林, 等. 某330MW亚临界机组供热改造后一次调频控制策略优化[J]. 电力科技与环保, 2023, 39 (2): 120- 128.
DOI |
|
HE Yuning, WANG Zizhu, QIAO Yilin, et al. Optimization of primary frequency control strategy for a 330MW sub-critical unit after heating transformation[J]. Electric Power Technology and Environmental Protection, 2023, 39 (2): 120- 128.
DOI |
|
| 5 |
YANG Z, WANG H Y, LIAO W L, et al. Protection challenges and solutions for AC systems with renewable energy sources: a review[J]. Protection and Control of Modern Power Systems, 2025, 10 (1): 18- 39.
DOI |
| 6 | 吉兴全, 张朔, 张玉敏, 等. 基于IELM算法的配电网故障区段定位[J]. 电力系统自动化, 2021, 45 (22): 157- 166. |
| JI Xingquan, ZHANG Shuo, ZHANG Yumin, et al. Fault section location for distribution network based on improved electromagnetism-like mechanism algorithm[J]. Automation of Electric Power Systems, 2021, 45 (22): 157- 166. | |
| 7 |
胡满琳, 李楠, 李一鸣, 等. 基于负序分量的含光伏电源配电网故障区段定位方法[J]. 中国电力, 2024, 57 (5): 188- 199.
DOI |
|
HU Manlin, LI Nan, LI Yiming, et al. Fault location method for distribution network with photovoltaic power based on negative sequence component[J]. Electric Power, 2024, 57 (5): 188- 199.
DOI |
|
| 8 | 钱达, 陈浩, 马刚. 基于改进正余弦算法的配电网无功优化[J]. 综合智慧能源, 2024, 46 (10): 40- 47. |
| QIAN Da, CHEN Hao, MA Gang. Reactive power optimal scheduling of distribution network based on improved sine-cosine algorithm[J]. Integrated Intelligent Energy, 2024, 46 (10): 40- 47. | |
| 9 |
李铁成, 张卫明, 臧谦, 等. 基于混合整数线性规划的配电网在线自愈方案[J]. 中国电力, 2023, 56 (5): 129- 136.
DOI |
|
LI Tiecheng, ZHANG Weiming, ZANG Qian, et al. Online self-healing scheme of distribution network based on mixed integer linear programming[J]. Electric Power, 2023, 56 (5): 129- 136.
DOI |
|
| 10 |
梁栋, 赵月梓, 贺国润, 等. 基于图半监督与多任务学习的配电网故障区段与类型统一辨识[J]. 电力系统保护与控制, 2024, 52 (12): 25- 32.
DOI |
|
LIANG Dong, ZHAO Yuezi, HE Guorun, et al. Unified identification of fault section and type for distribution networks based on graph semi-supervised and multi-task learning[J]. Power System Protection and Control, 2024, 52 (12): 25- 32.
DOI |
|
| 11 |
SUN Y, FAN Y F, HOU J J, et al. A unit protection scheme based on the transient current coordinate mapping interval[J]. Protection and Control of Modern Power Systems, 2025, 10 (1): 103- 120.
DOI |
| 12 | 麦章渠, 曾颖, 张禄亮, 等. 基于改进哈里斯鹰优化算法的有源配电网故障定位[J]. 智慧电力, 2022, 50 (11): 104- 111. |
| MAI Zhangqu, ZENG Ying, ZHANG Luliang, et al. Fault location of active distribution network based on improved Harris Hawks optimization algorithm[J]. Smart Power, 2022, 50 (11): 104- 111. | |
| 13 | ALI BUKHARI S B, KIM C H, MEHMOOD K K, et al. Convolutional neural network-based intelligent protection strategy for microgrids[J]. IET Generation, Transmission & Distribution, 2020, 14 (7): 1177- 1185. |
| 14 |
白通, 王慧芳, 杨林刚, 等. 基于图神经网络的海上风电场集电线路故障区段定位方法[J]. 电力系统及其自动化学报, 2024, 36 (10): 108- 116.
DOI |
|
BAI Tong, WANG Huifang, YANG Lingang, et al. Fault segment location method for collector lines in offshore wind farms based on graph neural network[J]. Proceedings of the CSU-EPSA, 2024, 36 (10): 108- 116.
DOI |
|
| 15 |
ZHANG M, WANG D, GAO H L, et al. Novel traveling wave fault location method for HVDC transmission line based on wavefront frequency[J]. Electric Power Systems Research, 2024, 234, 110598.
DOI |
| 16 | WU H, WANG J, NAN D L, et al. Fault location and fault cause identification method for transmission lines based on pose normalized multioutput convolutional nets[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74, 3500412. |
| 17 |
吉兴全, 陈金硕, 张玉敏, 等. 基于CNN-SVM的配电网故障分类研究[J]. 智慧电力, 2022, 50 (1): 94- 100.
DOI |
|
JI Xingquan, CHEN Jinshuo, ZHANG Yumin, et al. Fault classification in distribution network based on CNN-SVM[J]. Smart Power, 2022, 50 (1): 94- 100.
DOI |
|
| 18 |
WANG D, YU D C, GAO H L, et al. Frequency modification algorithm-based traveling wave fault location approach for overhead transmission lines with structural changes[J]. Protection and Control of Modern Power Systems, 2025, 10 (2): 1- 12.
DOI |
| 19 |
CHEN K J, HU J, ZHANG Y, et al. Fault location in power distribution systems via deep graph convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38 (1): 119- 131.
DOI |
| 20 |
何小龙, 高红均, 黄媛, 等. 基于一维卷积和图神经网络的配电网故障区段定位方法[J]. 电力系统保护与控制, 2024, 52 (17): 27- 39.
DOI |
|
HE Xiaolong, GAO Hongjun, HUANG Yuan, et al. Fault section location for a distribution network based on one-dimensional convolution and graph neural networks[J]. Power System Protection and Control, 2024, 52 (17): 27- 39.
DOI |
|
| 21 |
黄南天, 程铎, 蔡国伟. 基于改进时空图神经网络的高渗透率有源配电网故障定位[J]. 电力系统自动化, 2025, 49 (10): 112- 122.
DOI |
|
HUANG Nantian, CHENG Duo, CAI Guowei. Fault location for active distribution network with high penetration rate based on improved spatio-temporal graph neural network[J]. Automation of Electric Power Systems, 2025, 49 (10): 112- 122.
DOI |
|
| 22 |
LUO J, LIU Y, CUI Q S, et al. Single-ended time domain fault location based on transient signal measurements of transmission lines[J]. Protection and Control of Modern Power Systems, 2024, 9 (2): 61- 74.
DOI |
| 23 |
尚博阳, 罗国敏, 茹嘉昕, 等. 基于有限量测信息的多分支配电线路故障定位方法[J]. 高电压技术, 2023, 49 (6): 2308- 2319.
DOI |
|
SHANG Boyang, LUO Guomin, RU Jiaxin, et al. Fault location method of multi-branch distribution lines based on limited measurement information[J]. High Voltage Engineering, 2023, 49 (6): 2308- 2319.
DOI |
|
| 24 |
鲁晓天, 唐金锐, 尹昕, 等. 基于多维时频特征的新型配电系统单相接地故障定位方法[J]. 高电压技术, 2025, 51 (2): 903- 914.
DOI |
|
LU Xiaotian, TANG Jinrui, YIN Xin, et al. Single-phase-to-ground fault section location in new-type distribution system based on multidimensional time-frequency distribution characteristics[J]. High Voltage Engineering, 2025, 51 (2): 903- 914.
DOI |
|
| 25 |
邓丰, 史鸿飞, 冯思旭, 等. CNN-LSTM全景故障特征挖掘的配电网单端定位方法[J]. 中国电机工程学报, 2023, 43 (S1): 114- 126.
DOI |
|
DENG Feng, SHI Hongfei, FENG Sixu, et al. Single-ended traveling wave location method for distribution network based on CNN-LSTM panoramic fault feature mining[J]. Proceedings of the CSEE, 2023, 43 (S1): 114- 126.
DOI |
|
| 26 | 席磊, 熊雅慧, 彭典名, 等. 基于主成分分析-径向基神经网络算法的电网虚假数据注入攻击定位检测[J/OL]. 南方电网技术, 2025: 1–13. (2025-05-14). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFDW20250512002&dbname=CJFD&dbcode=CJFQ. |
| XI Lei, XIONG Yahui, PENG Dianming, et al. Localization detection of false data injection attack on power grid based on principal component analysis-radial basis neural network algorithm[J/OL]. Southern Power System Technology, 2025: 1–13. (2025-05-14). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFDW20250512002&dbname=CJFD&dbcode=CJFQ. | |
| 27 | 张亚丽, 王聪, 张宏立, 等. 基于非平稳Transformer的超短期风电功率多步预测[J]. 智慧电力, 2024, 52 (1): 108- 115. |
| ZHANG Yali, WANG Cong, ZHANG Hongli, et al. Multi-step prediction of ultra-short-term wind power based on non-stationary transformer[J]. Smart Power, 2024, 52 (1): 108- 115. | |
| 28 | 吉兴全, 薛科壮, 叶平峰, 等. 基于自调参深度双Q网络算法的配电网智能组网规划[J]. 智慧电力, 2025, 53 (11): 48- 55. |
| JI Xingquan, XUE Kezhuang, YE Pingfeng, et al. Smart networking planning for distribution networks based on an automatically adjusting parameters-based deep double Q network algorithm[J]. Smart Power, 2025, 53 (11): 48- 55. | |
| 29 | 赵唯嘉, 白云霄, 张云勇, 等. 基于关键特征对比分析的异常电价成因溯源方法[J]. 中国电力, 2025, 58 (5): 110- 120. |
| ZHAO Weijia, BAI Yunxiao, ZHANG Yunyong, et al. Traceability method for the causes of abnormal electricity prices based on comparative analysis of key features[J]. Electric Power, 2025, 58 (5): 110- 120. | |
| 30 | 王传琦, 伍历文, 邓志斌, 等. 时间累积架空输电线路覆冰预测模型与算法综述[J]. 中国电力, 2024, 57 (6): 153- 164, 234. |
| WANG Chuanqi, WU Liwen, DENG Zhibin, et al. Review of icing prediction model and algorithm for overhead transmission lines considering time cumulative effects[J]. Electric Power, 2024, 57 (6): 153- 164, 234. |
| [1] | 吉兴全, 张祥星, 张玉敏, 叶平峰, 王德龙, 黄心月. 基于LSD算法的多分支配电网故障定位[J]. 中国电力, 2025, 58(9): 54-67. |
| [2] | 陶军, 钟鸣, 张艺, 刘锋, 武玉珠, 夏振兴. 基于网络流算法和深度神经网络的智能变电站二次系统故障定位方法[J]. 中国电力, 2025, 58(9): 68-78. |
| [3] | 赵欣洋, 邹洪森, 杨晨, 李玉琦, 李博通, 刘思源. 基于模量反向行波的接地极线路故障类型识别与定位方法[J]. 中国电力, 2025, 58(2): 33-42. |
| [4] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 智能变电站多信息融合建模的通信链路故障定位方法[J]. 中国电力, 2023, 56(8): 207-215. |
| [5] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 基于深度学习的智能变电站通信链路故障定位方法[J]. 中国电力, 2023, 56(7): 136-145. |
| [6] | 李铁成, 张卫明, 臧谦, 王献志, 任江波, 周坤. 基于混合整数线性规划的配电网在线自愈方案[J]. 中国电力, 2023, 56(5): 129-136. |
| [7] | 曹赋禄, 赵晋斌, 潘超, 毛玲, 屈克庆. 基于DFFT的低压直流线路主动式接地故障定位方法[J]. 中国电力, 2023, 56(4): 184-191. |
| [8] | 钟鸣, 陶军, 刘洵宇, 杨逸, 杨炳元. 智能变电站光纤虚实回路映射及故障诊断技术[J]. 中国电力, 2023, 56(10): 171-178. |
| [9] | 杨喜行, 黄纯, 申亚涛, 胡念恩, 万子恒. 基于损失功率匹配的配电线路故障定位方法[J]. 中国电力, 2022, 55(8): 113-120. |
| [10] | 王巍璋, 王淳, 尹发根. 基于可达矩阵和贝叶斯定理的含分布式电源的配电网故障区段定位[J]. 中国电力, 2021, 54(7): 93-99,124. |
| [11] | 李福志, 郑卫宾, 张文海, 张智勇, 林德锋, 张旭波, 张荣建. 基于回路直流电阻测量的输电线路单相接地故障离线故障定位[J]. 中国电力, 2021, 54(2): 140-146. |
| [12] | 徐艳春, 赵彩彩, 孙思涵, MI Lu. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54(11): 133-143. |
| [13] | 赵思腾, 桂林, 张琦雪, 王祥珩. 大型发电机及其机端外接元件单相接地故障定位[J]. 中国电力, 2020, 53(3): 119-125. |
| [14] | 柴鹏, 周灏, 张煜, 赵文杰, 杨潇, 周苗, 李明贞. 基于双端行波法的电缆线路短路故障定位改进[J]. 中国电力, 2020, 53(11): 168-174. |
| [15] | 张磐, 张愉, 丁一, 李武兴, 姜惠兰, 陈娟. 基于微扰法的低压有源配电网故障定位方法[J]. 中国电力, 2018, 51(12): 63-71. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编