中国电力 ›› 2026, Vol. 59 ›› Issue (1): 163-174.DOI: 10.11930/j.issn.1004-9649.202507050

• 新型电网 • 上一篇    

基于多维故障特征提取的CNN-BiGRU-ATT多分支配电网故障定位

张玉敏1(), 王德龙1(), 张晓1(), 吉兴全1, 张祥星2, 黄心月1, 王学林3   

  1. 1. 山东科技大学 电气与自动化工程学院,山东 青岛 266590
    2. 国网山东省电力公司德州市陵城区供电公司,山东 德州 253500
    3. 青岛科技大学 自动化与电子工程学院,山东 青岛 266061
  • 收稿日期:2025-07-18 修回日期:2025-09-08 发布日期:2026-01-13 出版日期:2026-01-28
  • 作者简介:
    张玉敏(1986),女,博士,副教授,硕士生导师,从事电力系统运行与控制研究,E-mail:ymzhang2019@sdust.edu.cn
    张晓(1991),女,通信作者,硕士,中级实验师,从事微电网故障分析与保护配置研究,E-mail:skdzdhzx@163.com
  • 基金资助:
    国家自然科学基金青年资助项目(52107111);中国博士后面上资助项目(2023M734092);山东省自然科学基金资助项目(ZR2022ME219,ZR2023QE181,ZR2024ME029)。

CNN-BiGRU-ATT multi-branched distribution network fault location based on multi-dimensional fault feature extraction

ZHANG Yumin1(), WANG Delong1(), ZHANG Xiao1(), JI Xingquan1, ZHANG Xiangxing2, HUANG Xinyue1, WANG Xuelin3   

  1. 1. School of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
    2. District Power Supply Company of Lingcheng District, State Grid Shandong Electric Power Company, Dezhou 253500, China
    3. School of Electrical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
  • Received:2025-07-18 Revised:2025-09-08 Online:2026-01-13 Published:2026-01-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.52107111), China Postdoctoral Science Foundation (No.2023M734092), Shandong Province Natural Science Foundation (No.ZR2022ME219, No.ZR2023QE181 and No.ZR2024ME029).

摘要:

针对多分支配电网故障定位在微弱故障条件下故障特征提取困难的问题,提出了基于多维故障特征提取的卷积神经网络(convolution neural network,CNN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)-注意力机制(attention mechanism,ATT)多分支配电网故障定位方法。首先,分析不同故障位置和故障分支的行波特性,采用基于直线检测(line segment detector,LSD)的波头标定方法提取故障波头的坐标、幅值和斜率等信息,利用主成分分析法(principal component analysis,PCA)构造与故障位置成映射关系的多维故障特征空间;其次,构建CNN-BiGRU-ATT故障定位模型,深入挖掘时序特征和幅值特征与故障位置之间的关联;最后,结合分类与回归任务,分别实现故障区段定位与精准定位。在有限样本的情况下,区段定位准确率达99.6429%,精准定位误差55.77 m,跨工况误差最低2.95 m。结果表明,该模型能有效关联多维故障特征与故障信息,较对比模型具有更优的故障定位精度稳定性与场景泛化能力。

关键词: 故障定位, 多分支配电网, LSD, 多维故障特征, CNN-BiGRU-ATT

Abstract:

To address the difficulty in fault feature extraction for multi-branched distribution network fault location under weak fault conditions, this paper proposes a fault location method based on multi-dimensional feature extraction, which integrates the convolutional neural network (CNN), bidirectional gated recurrent unit (BiGRU), and attention mechanism (ATT). Firstly, the traveling wave characteristics of different fault locations and fault branches are analyzed. A wavefront calibration method based on the line segment detector (LSD) is employed to extract information features such as the coordinates, amplitudes, and slope of fault wavefronts, and principal component analysis (PCA) is used to construct a multi-dimensional fault-feature space that maps to fault locations. Then, a CNN-BiGRU-ATT fault location model is established to deeply explore the correlations between temporal features, amplitude features, and fault locations. Finally, classification and regression tasks are integrated to achieve both fault section identification and precise fault location. Under the condition of limited samples, the fault section location accuracy reaches 99.6429%, the accurate location error is 55.77 m, and the cross-condition error is as low as 2.95 m. The results show that the proposed model can effectively correlate multi-dimensional fault features with fault information, and exhibits superior stability of fault location accuracy and scenario generalization ability compared with the comparative models.

Key words: fault location, multi-branched distribution network, LSD, multi-dimensional fault features, CNN-BiGRU-ATT


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?