中国电力 ›› 2025, Vol. 58 ›› Issue (1): 196-204.DOI: 10.11930/j.issn.1004-9649.202401111
• 新能源与储能 • 上一篇
夏天1(), 刘代飞2(
), 岳家辉1, 陈来恩1, 李亦梁3
收稿日期:
2024-01-25
出版日期:
2025-01-28
发布日期:
2025-01-23
作者简介:
夏天(1993—),男,通信作者,硕士研究生,从事储能安全与控制技术研究,E-mail:862551450@qq.com基金资助:
Tian XIA1(), Daifei LIU2(
), Jiahui YUE1, Laien CHEN1, Yiliang Li3
Received:
2024-01-25
Online:
2025-01-28
Published:
2025-01-23
Supported by:
摘要:
锂离子电池参数辨识结果是电池状态预测的重要基础,提出了一种基于蜣螂算法(dung beetle optimizer,DBO)优化卡尔曼滤波(Kalman filtering,KF)的方法,用以在线辨识电池模型参数。该方法利用DBO快速全局寻找最优解特点,在KF算法中优化过程噪声和观测噪声的协方差矩阵,提高了识别电池模型参数的准确性。仿真实验数据表明,相较于未优化的KF参数辨识的结果,所提方法辨识误差有明显减少,预测的参数值更加接近真实值。
夏天, 刘代飞, 岳家辉, 陈来恩, 李亦梁. 基于蜣螂算法优化卡尔曼滤波的锂离子电池模型参数辨识[J]. 中国电力, 2025, 58(1): 196-204.
Tian XIA, Daifei LIU, Jiahui YUE, Laien CHEN, Yiliang Li. Estimation of Model Parameters of Lithium Batteries Based on Kalman Filtering Optimized by Dung Beetle Algorithm[J]. Electric Power, 2025, 58(1): 196-204.
参数 | 数值 | 参数 | 数值 | |||
额定容量/(mA·h) | 重量/g | 50.0 | ||||
额定电压/V | 3.6 | 充电温度/℃ | +10~+45 | |||
放大放电电流/A | 10 | 放电温度/℃ | –20~+60 | |||
最大充电电流/A | 4 | 循环使用寿命/次 | ||||
能量密度/(W·h·g–1) | 218 | 尺寸/mm | 65.1×18.25 |
表 1 18650号电池基础参数
Table 1 Basic parameters of No. 18650 battery
参数 | 数值 | 参数 | 数值 | |||
额定容量/(mA·h) | 重量/g | 50.0 | ||||
额定电压/V | 3.6 | 充电温度/℃ | +10~+45 | |||
放大放电电流/A | 10 | 放电温度/℃ | –20~+60 | |||
最大充电电流/A | 4 | 循环使用寿命/次 | ||||
能量密度/(W·h·g–1) | 218 | 尺寸/mm | 65.1×18.25 |
SOC/% | R0/Ω | R1/Ω | R2/Ω | C1/F | C2/F | |||||
50 | ||||||||||
40 | ||||||||||
30 | ||||||||||
20 | ||||||||||
10 | ||||||||||
0 | - |
表 2 不同SOC值下参数辨识结果
Table 2 Parameter identification results under different SOC
SOC/% | R0/Ω | R1/Ω | R2/Ω | C1/F | C2/F | |||||
50 | ||||||||||
40 | ||||||||||
30 | ||||||||||
20 | ||||||||||
10 | ||||||||||
0 | - |
工况 | EMS | ERMS | EMA | |||
DST | ||||||
FUDS | ||||||
US60 | ||||||
BJDST |
表 3 端电压误差值可信度指标对比
Table 3 Comparison of the credibility indexs of terminal voltage error
工况 | EMS | ERMS | EMA | |||
DST | ||||||
FUDS | ||||||
US60 | ||||||
BJDST |
1 | 岳永胜, 孙冬, 许爽, 等. 锂离子电池等效电路模型的研究进展[J]. 电池, 2023, 53 (6): 682- 686. |
YUE Yongsheng, SUN Dong, XU Shuang, et al. Research progress in equivalent circuit model for Li-ion battery[J]. Battery Bimonthly, 2023, 53 (6): 682- 686. | |
2 | 朱沐雨, 马宏忠, 郭鹏宇, 等. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57 (6): 18- 26. |
ZHU Muyu, MA Hongzhong, GUO Pengyu, et al. State of charge estimation of energy storage battery pack under typical peak/frequency modulation conditions[J]. Electric Power, 2024, 57 (6): 18- 26. | |
3 | 陈来恩, 曾小勇, 曾子豪, 等. 基于物理信息与深度神经网络的锂离子电池温度预测[J]. 中国电力, 2024, 57 (11): 18- 25. |
CHEN Laien, ZENG Xiaoyong, ZENG Zihao, et al. Temperature prediction of lithium-ion batteries based on physical information and deep neural network[J]. Electric Power, 2024, 57 (11): 18- 25. | |
4 | 邹国发, 高祥, 王春. 考虑锂电池多时间尺度效应的参数辨识与SOC估计方法[J]. 电力系统保护与控制, 2024, 52 (21): 71- 80. |
ZOU Guofa, GAO Xiang, WANG Chun. Parameter identification and SOC estimation methods considering multi-timescale effect lithium batteries[J]. Power System Protection and Control, 2024, 52 (21): 71- 80. | |
5 | 邹红波, 柴延辉, 杨钦贺, 等. 基于混合ISSA-LSTM的锂离子电池剩余使用寿命预测[J]. 电力系统保护与控制, 2023, 51 (19): 21- 31. |
ZOU Hongbo, CHAI Yanhui, YANG Qinhe, et al. Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM[J]. Power System Protection and Control, 2023, 51 (19): 21- 31. | |
6 | 岳家辉, 夏向阳, 蒋戴宇, 等. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56 (7): 163- 174. |
YUE Jiahui, XIA Xiangyang, JIANG Daiyu, et al. Remaining useful life prediction and state of health estimation of lithium-ion batteries based on voltage data segment hybrid model[J]. Electric Power, 2023, 56 (7): 163- 174. | |
7 | 郭向伟, 邢程, 司阳, 等. RLS锂电池全工况自适应等效电路模型[J]. 电工技术学报, 2022, 37 (16): 4029- 4037. |
GUO Xiangwei, XING Cheng, SI Yang, et al. RLS adaptive equivalent circuit model of lithium battery under full working condition[J]. Transactions of China Electrotechnical Society, 2022, 37 (16): 4029- 4037. | |
8 |
CHEN Z W, YANG L W, ZHAO X B, et al. Online state of charge estimation of Li-ion battery based on an improved unscented Kalman filter approach[J]. Applied Mathematical Modelling, 2019, 70, 532- 544.
DOI |
9 |
HE L, WANG Y Y, WEI Y J, et al. An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery[J]. Energy, 2022, 244, 122627.
DOI |
10 | XIA B Z, HUANG R, LAO Z Z, et al. Online parameter identification of lithium-ion batteries using a novel multiple forgetting factor recursive least square algorithm[J]. Energies, 2018, 11 (11): 3180. |
11 | 范兴明, 封浩, 张鑫. 最小二乘算法优化及其在锂离子电池参数辨识中的应用[J]. 电工技术学报, 2024, 39 (5): 1577- 1588. |
FAN Xingming, FENG Hao, ZHANG Xin. Optimization of least squares method and its application in parameter identification of lithium-ion battery model[J]. Transactions of China Electrotechnical Society, 2024, 39 (5): 1577- 1588. | |
12 | 谢文超, 赵延明, 方紫微, 等. 带可变遗忘因子递推最小二乘法的超级电容模组等效模型参数辨识方法[J]. 电工技术学报, 2021, 36 (5): 996- 1005. |
XIE Wenchao, ZHAO Yanming, FANG Ziwei, et al. Variable forgetting factor recursive least squales based parameter identification method for the equivalent circuit model of the supercapacitor cell module[J]. Transactions of China Electrotechnical Society, 2021, 36 (5): 996- 1005. | |
13 | 严干贵, 李洪波, 段双明, 等. 基于模型参数辨识的储能电池状态估算[J]. 中国电机工程学报, 2020, 40 (24): 8145- 8154, 8251. |
YAN Gangui, LI Hongbo, DUAN Shuangming, et al. Energy storage battery state estimation based on model parameter identification[J]. Proceedings of the CSEE, 2020, 40 (24): 8145- 8154, 8251. | |
14 |
GUO P, MA W T, YI D L, et al. Enhanced square root CKF with mixture correntropy loss for robust state of charge estimation of lithium-ion battery[J]. Journal of Energy Storage, 2023, 73, 108920.
DOI |
15 | ZHU Q, XU M E, ZHENG M Q. Iterative learning based model identification and state of charge estimation of lithium-ion battery[C]//2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Enshi, China. IEEE, 2018: 222–228. |
16 | 王世繁, 董亮, 罗杨, 等. 基于极大似然准则UKF的锂电池SOC估算研究[J]. 自动化与仪器仪表, 2018, (3): 76- 80. |
WANG Shifan, DONG Liang, LUO Yang, et al. Based on maximum likelihood principle UKF for SOC estimation of lithium battery[J]. Automation & Instrumentation, 2018, (3): 76- 80. | |
17 | 刘世林, 李德俊, 姚伟, 等. 基于核极限学习机与容积卡尔曼滤波融合的锂电池荷电状态估计[J]. 湖南大学学报(自然科学版), 2023, 50 (10): 51- 59. |
LIU Shilin, LI Dejun, YAO Wei, et al. Estimation on state of charge of lithium battery based on fusion of kernel extreme learning machine and cubature Kalman filter[J]. Journal of Hunan University (Natural Sciences), 2023, 50 (10): 51- 59. | |
18 | 宫明辉, 乌江, 焦朝勇. 基于模糊自适应扩展卡尔曼滤波器的锂电池SOC估算方法[J]. 电工技术学报, 2020, 35 (18): 3972- 3978. |
GONG Minghui, WU Jiang, JIAO Chaoyong. SOC estimation method of lithium battery based on fuzzy adaptive extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35 (18): 3972- 3978. | |
19 | 远翔宇, 杨风暴, 杨童瑶. 基于自适应蜣螂算法的无人机三维路径规划方法[J]. 无线电工程, 2024, 54(4): 928-936. |
YUAN Xiangyu, YANG Fengbao, YANG Tongyao. UAV 3D path planning method based on adaptive dung beetle algorithm[J]. Radio Engineering, 2023, 53(05), 1121-1128. | |
20 | 易望远. 数控铣削能耗预测及切削参数多目标优化研究[J]. 重庆理工大学学报(自然科学), 2023, 37 (7): 256- 264. |
YI Wangyuan. Research on energy consumption prediction and multi-objective optimization of cutting parameters in CNC milling[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37 (7): 256- 264. | |
21 |
XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79 (7): 7305- 7336.
DOI |
[1] | 李丹, 秦世耀, 李少林, 贺敬. 基于混沌粒子群的双馈风电机组LVRT实测建模及暂态参数辨识[J]. 中国电力, 2024, 57(8): 75-84. |
[2] | 熊慧敏, 彭跃中, 何励学, 胡章茂, 王唯, 田红. 热管耦合相变材料全气候锂离子电池热管理系统性能分析[J]. 中国电力, 2024, 57(6): 27-36. |
[3] | 夏向阳, 谭欣欣, 单周平, 李辉, 徐志强, 吴晋波, 岳家辉, 陈贵全. 储能电站锂离子电池本体安全关键技术及新技术应用情况[J]. 中国电力, 2024, 57(11): 1-17. |
[4] | 陈来恩, 曾小勇, 曾子豪, 成采辰, 孙耀科. 基于物理信息与深度神经网络的锂离子电池温度预测[J]. 中国电力, 2024, 57(11): 18-25. |
[5] | 张媛, 夏向阳, 岳家辉, 刘代飞, 王明琦. 基于电池簇放电电量的电池堆不一致性在线监测方法[J]. 中国电力, 2023, 56(7): 207-215,227. |
[6] | 岳家辉, 夏向阳, 蒋戴宇, 周冠东, 徐志强, 张媛, 吕崇耿. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56(7): 163-174. |
[7] | 薛飞, 李宏强, 李旭涛, 徐恒山. 基于LSTM神经网络的双馈风机控制参数辨识方法[J]. 中国电力, 2023, 56(6): 31-39. |
[8] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
[9] | 刘文军, 欧名勇, 夏向阳, 李湘华, 岳家辉. 基于欧姆内阻压降的电池簇不一致性在线监测方法研究[J]. 中国电力, 2022, 55(8): 87-95. |
[10] | 黎冲, 王成辉, 王高, 鲁宗虎, 马成智. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55(8): 73-86,95. |
[11] | 乔腾, 张益铭, 曹一家, 王力, 袁清. 基于概率可靠性评估的永磁直驱风机低电压穿越控制模型参数辨识[J]. 中国电力, 2021, 54(12): 102-111. |
[12] | 黄潇潇, 杨韬, 郑骁麟, 郭凌旭, 林济铿. 基于PMU量测信息的短线路同杆并架双回线参数辨识[J]. 中国电力, 2020, 53(7): 141-148. |
[13] | 于国强, 崔晓波, 史毅越, 汤可怡, 张天海. 基于改进群优化算法的深度调峰机组一次调频建模[J]. 中国电力, 2020, 53(6): 147-152. |
[14] | 张伟骏, 陈文龙, 黄霆, 苏清梅, 林芳, 林济铿. 基于轨迹灵敏度的同步发电机参数辨识[J]. 中国电力, 2019, 52(9): 102-109. |
[15] | 王旭东, 王高猛, 林济铿, 康宁, 丁一, 刘辉. 基于AMI量测信息的低压配电网线路参数辨识方法[J]. 中国电力, 2019, 52(5): 63-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||