中国电力 ›› 2025, Vol. 58 ›› Issue (1): 196-204.DOI: 10.11930/j.issn.1004-9649.202401111

• 新能源与储能 • 上一篇    

基于蜣螂算法优化卡尔曼滤波的锂离子电池模型参数辨识

夏天1(), 刘代飞2(), 岳家辉1, 陈来恩1, 李亦梁3   

  1. 1. 长沙理工大学 电气与信息工程学院,湖南 长沙 410114
    2. 长沙理工大学 能源与动力工程学院,湖南 长沙 410114
    3. 长高电新科技股份公司,湖南 长沙 410219
  • 收稿日期:2024-01-25 出版日期:2025-01-28 发布日期:2025-01-23
  • 作者简介:夏天(1993—),男,通信作者,硕士研究生,从事储能安全与控制技术研究,E-mail:862551450@qq.com
    刘代飞(1975—),男,副教授,从事电储能安全与控制技术研究,E-mail:dfcanfly@126.com
  • 基金资助:
    国家自然科学基金资助项目(柔性直流输电交流侧故障下换流器多桥臂主动应对的能量调控机理及穿越控制研究,51977014)。

Estimation of Model Parameters of Lithium Batteries Based on Kalman Filtering Optimized by Dung Beetle Algorithm

Tian XIA1(), Daifei LIU2(), Jiahui YUE1, Laien CHEN1, Yiliang Li3   

  1. 1. School of Electrical and Information Engineering, ChangSha University of Science and Technology, Changsha 410114, China
    2. School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
    3. ChangGao Dianxin Science and Technology Co., Ltd., Changsha 410219, China
  • Received:2024-01-25 Online:2025-01-28 Published:2025-01-23
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Energy Regulation Mechanism and Crossing Control of Multi-bridge Arm Active Response of Converter under AC side Fault in flexible DC Transmission, No.51977014).

摘要:

锂离子电池参数辨识结果是电池状态预测的重要基础,提出了一种基于蜣螂算法(dung beetle optimizer,DBO)优化卡尔曼滤波(Kalman filtering,KF)的方法,用以在线辨识电池模型参数。该方法利用DBO快速全局寻找最优解特点,在KF算法中优化过程噪声和观测噪声的协方差矩阵,提高了识别电池模型参数的准确性。仿真实验数据表明,相较于未优化的KF参数辨识的结果,所提方法辨识误差有明显减少,预测的参数值更加接近真实值。

关键词: 锂离子电池, 参数辨识, 卡尔曼滤波器, 蜣螂算法, 协方差矩阵

Abstract:

The identification of parameters for lithium batteries is an important basis for battery state prediction. An improved kalman filtering (KF) based on dung beetle optimizer (DBO) is proposed for online identification of battery model parameters. This method utilizes the rapid global search for optimal solutions characteristic of DBO to optimize the covariance matrices of process noise and observation noise in KF, thereby improving the accuracy of identifying battery model parameters. Simulation experiment data shows that compared to the parameter identification results based on unoptimized KF, the variance that the identification results of this method compared to the true values are significantly reduced, resulting in the predicted parameter values are closer to the true values.

Key words: lithium battery, parameter identification, kalman filter, dung beetle optimizer, covariance matrix