中国电力 ›› 2025, Vol. 58 ›› Issue (1): 15-25.DOI: 10.11930/j.issn.1004-9649.202401107

• 电能质量及柔性输电技术 • 上一篇    下一篇

基于相关性分析的电网非同步监测数据场景谐波责任划分

陈仕龙1(), 吴涛1, 郭成1(), 毕贵红1, 钱永亮2   

  1. 1. 昆明理工大学 电力工程学院,云南 昆明 650500
    2. 云南电网有限责任公司文山供电局,云南 文山 663099
  • 收稿日期:2024-01-25 接受日期:2024-07-25 出版日期:2025-01-28 发布日期:2025-01-23
  • 作者简介:陈仕龙(1973—),男,博士,教授,从事电力系统新型继电保护、电能质量分析等研究,E-mail:chenshilong3@126.com
    郭成(1978—),男,通信作者,博士,教授,从事电能质量分析与控制、电力系统性稳定分析等研究,E-mail:gc325@126.com
  • 基金资助:
    国家自然科学基金资助项目(特高压多端混合直流输电线路行波边界保护研究,52067009)。

Harmonic Responsibility Division of Grid Asynchronous Monitoring Data Scenarios Based on Correlation Analysis

Shilong CHEN1(), Tao WU1, Cheng GUO1(), Guihong BI1, Yongliang QIAN2   

  1. 1. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China
    2. Wenshan Power Supply Bureau of Yunnan Power Grid Co., Ltd., Wenshan 663099, China
  • Received:2024-01-25 Accepted:2024-07-25 Online:2025-01-28 Published:2025-01-23
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Travelling Wave Boundary Protection for Multi-terminal Hybrid UHVDC Transmission Line, No.52067009).

摘要:

针对传统谐波责任划分方法需采用专门同步设备监测数据,且需基于等值电路模型划分谐波责任,工程应用较为复杂等不足,采用现有谐波监测装置非同步测量数据,提出一种综合考虑了数据非同步性、场景划分和数据相关性的谐波责任划分方法。首先,对原始非同步监测数据集采用分段聚合近似算法进行降噪预处理,利用形状动态时间规整算法(shape dynamic time warping,ShapeDTW)实现数据匹配对齐;然后,利用点排序识别聚类结构的聚类算法(ordering points to identify the clustering structure,OPTICS)划分场景以处理电力系统中因负荷投切和无功补偿装置切换等情况导致的谐波责任变化;最后,基于相关性分析构建场景谐波责任和总谐波责任指标,在指标构建的过程中引入了场景时长占比这一因素以得到更加科学合理的总谐波责任值。通过仿真验证和电网实例验证,该方法能基于现有非同步性监测数据实现各用户合理时间尺度动态谐波责任划分,可为工程上的快速谐波责任划分提供一定的新思路和新方法。

关键词: 电能质量, 谐波责任划分, 非同步监测数据, 场景划分, 相关性分析

Abstract:

In view of the shortcomings of the traditional harmonic responsibility division methods, which require the use of dedicated synchronous equipment monitoring data and the division of harmonic responsibility based on equivalent circuit model, and are complex in engineering application, based on the asynchronous measurement data of the existing harmonic monitoring devices, a harmonic responsibility division method is proposed, which takes into account the asynchronous nature of the data, the division of the scenarios, and the correlation of the data. Firstly, the original asynchronous monitoring data set is preprocessed using piecewise aggregation approximation (PAA) algorithm for noise reduction, and then the ShapeDTW algorithm is used to realize the data matching and alignment. Secondly, the OPTICS algorithm is used to divide the scenarios for dealing with the harmonic responsibility changes in power system caused by switching of the power load and the reactive power compensation devices. Finally, the harmonic responsibility of the scenarios and the total harmonic responsibility indexes are constructed based on correlation analysis, and the factor of scenario duration percentage is introduced in the process of indexes construction to .get a more scientific and reasonable total harmonic responsibility value. The simulation verification and grid example verification show that the proposed method can realize the dynamic harmonic responsibility division of each user in a reasonable time scale based on the existing asynchronous monitoring data, which can provide new ideas and methods for fast harmonic responsibility division in engineering.

Key words: power quality, responsibility division, asynchronous monitoring data, scenario division, correlation analysis