中国电力 ›› 2024, Vol. 57 ›› Issue (2): 138-148.DOI: 10.11930/j.issn.1004-9649.202303072
收稿日期:
2023-03-15
接受日期:
2023-12-19
出版日期:
2024-02-28
发布日期:
2024-02-28
作者简介:
陈仕龙(1973—),男,博士,教授,从事电力系统新型继电保护、电能质量分析等研究,E-mail:chenshilong3@126.com基金资助:
Shilong CHEN(), Tao WU, Cheng GUO(
), Zirui ZHANG, Jinghao SUN
Received:
2023-03-15
Accepted:
2023-12-19
Online:
2024-02-28
Published:
2024-02-28
Supported by:
摘要:
在背景谐波阻抗变化和背景谐波电压波动的情况下,传统谐波责任划分方法难以适用于现有的统计型谐波监测数据,提出一种背景谐波变化下基于监测数据的多谐波责任划分方法。首先,构建谐波监测数据区间样本集,并建立背景谐波变化下的多谐波源区间谐波责任划分数学模型;其次,利用基于密度的聚类算法(DBSCAN)将采集到的统计型谐波数据集以簇为评价周期进行场景划分,并采用滑窗动态相关性分析方法筛选出满足线性关系阈值要求的数据;最后,利用基于参数化回归算法(PM)的区间线性进行方程参数计算并获取最佳样本划分方案,在构造的区间谐波责任划分基础上计算中长期时间范畴的谐波责任。利用实际电网中的谐波监测数据对所提方法进行验证,验证了该方法能利用现有的统计型谐波监测数据在背景谐波变化的情况下对每个谐波源进行合理时间尺度的谐波责任划分,可为实际电力系统运行过程中的多谐波责任划分提供一种新的思路。
陈仕龙, 吴涛, 郭成, 张梓睿, 孙竟豪. 基于DBSCAN聚类和区间回归的多谐波责任划分[J]. 中国电力, 2024, 57(2): 138-148.
Shilong CHEN, Tao WU, Cheng GUO, Zirui ZHANG, Jinghao SUN. Division of Multi-harmonic Responsibilities Based on DBSCAN Clustering and Interval Regression[J]. Electric Power, 2024, 57(2): 138-148.
场景 | 馈线1 | 馈线2 | 馈线3 | |||
1 | [11.40, 12.64] | [–3.58, –2.65] | [0.27, 0.31] | |||
2 | [12.36, 13.81] | [–3.72, –2.78] | [0.33, 0.36] | |||
3 | [10.56, 12.19] | [–2.19, –0.82] | [0.23, 0.29] | |||
4 | [11.95, 13.25] | [–2.74, –1.84] | [0.31, 0.35] | |||
5 | [12.28, 13.58] | [–2.85, –1.50] | [0.21, 0.24] | |||
6 | [11.48, 12.62] | [–3.33, –2.37] | [0.29, 0.33] | |||
7 | [12.21, 13.97] | [–2.23, –1.61] | [0.25, 0.28] |
表 1 9次谐波各场景区间参数[α1]计算结果
Table 1 Calculation results of the parameter [α1] for the interval of each scenario of the 9th harmonic
场景 | 馈线1 | 馈线2 | 馈线3 | |||
1 | [11.40, 12.64] | [–3.58, –2.65] | [0.27, 0.31] | |||
2 | [12.36, 13.81] | [–3.72, –2.78] | [0.33, 0.36] | |||
3 | [10.56, 12.19] | [–2.19, –0.82] | [0.23, 0.29] | |||
4 | [11.95, 13.25] | [–2.74, –1.84] | [0.31, 0.35] | |||
5 | [12.28, 13.58] | [–2.85, –1.50] | [0.21, 0.24] | |||
6 | [11.48, 12.62] | [–3.33, –2.37] | [0.29, 0.33] | |||
7 | [12.21, 13.97] | [–2.23, –1.61] | [0.25, 0.28] |
场景 | 馈线1 | 馈线2 | 馈线3 | |||
1 | 0.1754 | –0.2362 | 1.0608 | |||
2 | 0.1634 | –0.2587 | 1.0953 | |||
3 | 0.1373 | –0.0762 | 0.9389 | |||
4 | 0.1767 | –0.2131 | 1.0364 | |||
5 | 0.1543 | –0.1922 | 1.0379 | |||
6 | 0.1497 | –0.2635 | 1.1138 | |||
7 | 0.1238 | –0.2473 | 1.1235 |
表 2 各场景下9次谐波责任标幺值的划分
Table 2 Division of responsibility p.u. for the 9th harmonic in each scenario
场景 | 馈线1 | 馈线2 | 馈线3 | |||
1 | 0.1754 | –0.2362 | 1.0608 | |||
2 | 0.1634 | –0.2587 | 1.0953 | |||
3 | 0.1373 | –0.0762 | 0.9389 | |||
4 | 0.1767 | –0.2131 | 1.0364 | |||
5 | 0.1543 | –0.1922 | 1.0379 | |||
6 | 0.1497 | –0.2635 | 1.1138 | |||
7 | 0.1238 | –0.2473 | 1.1235 |
谐波源馈线 | 动态谐波责任指标 | 全时段总谐波 责任值指标 | ||||
最大责任值 | 最小责任值 | |||||
1 | 0.176 7 | 0.123 8 | 0.154 4 | |||
2 | –0.263 5 | –0.076 2 | –0.212 5 | |||
3 | 1.123 5 | 0.938 9 | 1.058 1 |
表 3 9次谐波责任标幺值的划分统计分析
Table 3 Statistical analysis of the division of responsibility p.u. for the 9th harmonic
谐波源馈线 | 动态谐波责任指标 | 全时段总谐波 责任值指标 | ||||
最大责任值 | 最小责任值 | |||||
1 | 0.176 7 | 0.123 8 | 0.154 4 | |||
2 | –0.263 5 | –0.076 2 | –0.212 5 | |||
3 | 1.123 5 | 0.938 9 | 1.058 1 |
场景 | 馈线1 | 馈线2 | 馈线3 | |||
1 | 0.9059 | –0.2583 | 0.3524 | |||
2 | 0.8868 | –0.2994 | 0.4126 | |||
3 | 0.8291 | –0.0881 | 0.2590 | |||
4 | 0.9659 | –0.2532 | 0.2873 | |||
5 | 0.9481 | –0.2631 | 0.3150 | |||
6 | 0.9300 | –0.3386 | 0.4086 | |||
7 | 0.7395 | –0.3826 | 0.6431 |
表 4 各场景下的7次谐波责任标幺值的划分
Table 4 Division of the responsibility p.u. for the 7th harmonic in each scenario
场景 | 馈线1 | 馈线2 | 馈线3 | |||
1 | 0.9059 | –0.2583 | 0.3524 | |||
2 | 0.8868 | –0.2994 | 0.4126 | |||
3 | 0.8291 | –0.0881 | 0.2590 | |||
4 | 0.9659 | –0.2532 | 0.2873 | |||
5 | 0.9481 | –0.2631 | 0.3150 | |||
6 | 0.9300 | –0.3386 | 0.4086 | |||
7 | 0.7395 | –0.3826 | 0.6431 |
谐波源馈线 | 动态谐波责任指标 | 全时段总谐波 责任值指标 | ||||
最大责任值 | 最小责任值 | |||||
1 | 0.965 9 | 0.739 5 | 0.886 5 | |||
2 | –0.382 6 | –0.088 1 | –0.269 0 | |||
3 | 0.643 1 | 0.259 0 | 0.382 6 |
表 5 7次谐波责任标幺值的划分统计分析
Table 5 Statistical analysis of the division of responsibility p.u. for the 7th harmonic
谐波源馈线 | 动态谐波责任指标 | 全时段总谐波 责任值指标 | ||||
最大责任值 | 最小责任值 | |||||
1 | 0.965 9 | 0.739 5 | 0.886 5 | |||
2 | –0.382 6 | –0.088 1 | –0.269 0 | |||
3 | 0.643 1 | 0.259 0 | 0.382 6 |
1 | 刘可, 王轩, 王杨, 等. 静止无功发生器谐波模型及其对谐振影响分析[J]. 中国电力, 2022, 51 (9): 174- 182. |
LIU Ke, WANG Xuan, WANG Yang, et al. Harmonic model of static var generator and analysis of its resonance influence[J]. Electric Power, 2022, 51 (9): 174- 182. | |
2 | DING T, CHEN H K, WU B, et al. Harmonic characteristics analysis of PWM-based electric vehicle chargers considering control strategy[C]//2018 18th International Conference on Harmonics and Quality of Power (ICHQP). Ljubljana, Slovenia. IEEE, 2018: 1–5. |
3 |
丁同, 陈红坤, 吴斌, 等. 多谐波源定位及谐波责任量化区分方法综述[J]. 电力自动化设备, 2020, 40 (1): 19- 30.
DOI |
DING Tong, CHEN Hongkun, WU Bin, et al. Overview on location and harmonic responsibility quantitative determination methods of multiple harmonic sources[J]. Electric Power Automation Equipment, 2020, 40 (1): 19- 30.
DOI |
|
4 |
XU W, LIU Y L. A method for determining customer and utility harmonic contributions at the point of common coupling[J]. IEEE Transactions on Power Delivery, 2000, 15 (2): 804- 811.
DOI |
5 |
商立群, 许海洋, 臧鹏, 等. 基于DFT和群组谐波能量回收理论的谐波与间谐波检测算法[J]. 电力系统保护与控制, 2022, 0 (15): 91- 98.
DOI |
YONG Jing, CHEN Liang, CHEN Shuangyan. A harmonic and interharmonic detection algorithm based on DFT and group harmonic energy recovery theory[J]. Power System Protection and Control, 2022, 0 (15): 91- 98.
DOI |
|
6 |
李清, 张东辉, 陈名, 等. 多直流馈入输电系统中高压柔性直流高频风险评估计算方法[J]. 南方电网技术, 2023, (4): 1- 9.
DOI |
LI Qing, ZHANG Donghui, CHEN Ming, et al. Calculation method for high frequency risk assessment of VSC-HVDC in multi-infeed DC transmission system[J]. Southern Power System Technology, 2023, (4): 1- 9.
DOI |
|
7 |
陈思源, 景巍巍, 史明明, 等. 新能源接入背景下的谐波源建模方法综述[J]. 电力系统保护与控制, 2022, 50 (7): 162- 175.
DOI |
CHEN Siyuan, JING Weiwei, SHI Mingming, et al. Review of harmonic source modeling methods with the background of renewable energy access[J]. Power System Protection and Control, 2022, 50 (7): 162- 175.
DOI |
|
8 | 马思棋, 王忠. 基于贝叶斯优化弹性网络回归的谐波状态估计方法[J]. 中国电力, 2022, 55 (8): 104- 112. |
MA Siqi, WANG Zhong. Harmonic state estimation method based on Bayesian optimized elastic network regression[J]. Electric Power, 2022, 55 (8): 104- 112. | |
9 | XU W, BAHRY R, MAZIN H E, et al. A method to determine the harmonic contributions of multiple loads[C]//2009 IEEE Power & Energy Society General Meeting. Calgary, AB, Canada. IEEE, 2009: 1–6. |
10 |
孙媛媛, 李佳奇, 尹志明. 基于实测数据的集中式多谐波源责任评估[J]. 中国电机工程学报, 2014, 34 (13): 2164- 2171.
DOI |
SUN Yuanyuan, LI Jiaqi, YIN Zhiming. Quantifying harmonic impacts for concentrated multiple harmonic sources using actual data[J]. Proceedings of the CSEE, 2014, 34 (13): 2164- 2171.
DOI |
|
11 |
赵冬梅, 谢家康, 王闯, 等. 基于Bagging集成学习的电力系统暂态稳定在线评估[J]. 电力系统保护与控制, 2022, 50 (8): 1- 10.
DOI |
ZHAO Dongmei, XIE Jiakang, WANG Chuang, et al. On-line transient stability assessment of a power system based on Bagging ensemble learning[J]. Proceedings of the CSEE, 2022, 50 (8): 1- 10.
DOI |
|
12 |
王行亚, 肖先勇, 吴俊, 等. 基于线性度校验的二元线性回归系统谐波阻抗估计方法[J]. 中国电机工程学报, 2020, 40 (9): 2826- 2835.
DOI |
WANG Hangya, XIAO Xianyong, WU Jun, et al. Utility harmonic impedance estimation based on binary linear regression with linearity calibration[J]. Proceedings of the CSEE, 2020, 40 (9): 2826- 2835.
DOI |
|
13 |
惠锦, 杨洪耕, 叶茂清. 多谐波源条件下的谐波污染责任划分研究[J]. 中国电机工程学报, 2011, 31 (13): 48- 54.
DOI |
HUI Jin, YANG Honggeng, YE Maoqing. Research on the responsibility partition of harmonic pollution of multiple harmonic sources[J]. Proceedings of the CSEE, 2011, 31 (13): 48- 54.
DOI |
|
14 |
刘子腾, 徐永海, 陶顺. 基于SHIBSS方法和数据优选的系统侧谐波阻抗估算方法[J]. 电力自动化设备, 2021, 41 (2): 193- 199.
DOI |
LIU Ziteng, XU Yonghai, TAO Shun. Estimation method of harmonic impedance on system side based on SHIBSS method and data optimization[J]. Electric Power Automation Equipment, 2021, 41 (2): 193- 199.
DOI |
|
15 | CUI Y, XU W. Assessment of potential harmonic problems for systems with distributed or random harmonic sources[C]//2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA. IEEE, 2007: 1–6. |
16 | 吕洋. 电网谐波阻抗测量[D]. 杭州: 浙江大学, 2010. |
LV Yang. Measurement of power system harmonic impedance[D]. Hangzhou: Zhejiang University, 2010. | |
17 | 王辉, 刘炜, 李群湛, 等. 基于复数域偏最小二乘法与等值法的多谐波源责任划分[J]. 电力系统自动化, 2017, 41 (4): 78- 85, 119. |
WANG Hui, LIU Wei, LI Qunzhan, et al. Responsibility distinction for multiple harmonic sources based on partial least square in complex field and equivalent method[J]. Automation of Electric Power Systems, 2017, 41 (4): 78- 85, 119. | |
18 |
MAZIN H E, XU W, HUANG B. Determining the harmonic impacts of multiple harmonic-producing loads[J]. IEEE Transactions on Power Delivery, 2011, 26 (2): 1187- 1195.
DOI |
19 |
孟思雨, 肖先勇, 张逸, 等. 基于有效数据段选取的多谐波源责任划分方法[J]. 电网技术, 2017, 41 (6): 2006- 2011.
DOI |
MENG Siyu, XIAO Xianyong, ZHANG Yi, et al. A valid data selection method in estimating harmonic impact of individual loads[J]. Power System Technology, 2017, 41 (6): 2006- 2011.
DOI |
|
20 |
王瑜, 臧天磊, 符玲, 等. 考虑背景谐波电压变化的多谐波源谐波责任划分[J]. 电力系统自动化, 2015, 39 (18): 55- 61.
DOI |
WANG Yu, ZANG Tianlei, FU Ling, et al. Harmonic contribution partition of multiple harmonic sources considering background harmonic voltage fluctuation[J]. Automation of Electric Power Systems, 2015, 39 (18): 55- 61.
DOI |
|
21 |
刘苏婕, 肖先勇, 刘亚梅, 等. 基于IGG权重函数复数域多元线性回归算法的谐波责任分摊方法[J]. 电力自动化设备, 2017, 37 (3): 160- 166.
DOI |
LIU Sujie, XIAO Xianyong, LIU Yamei, et al. Harmonic responsibility allocation method based on complex field multiple linear regression algorithm with IGG weight function[J]. Electric Power Automation Equipment, 2017, 37 (3): 160- 166.
DOI |
|
22 |
马智远, 许中, 黄裕春, 等. 背景谐波阻抗变化情况下的谐波责任划分[J]. 电测与仪表, 2016, 53 (23): 78- 83, 89.
DOI |
MA Zhiyuan, XU Zhong, HUANG Yuchun, et al. Harmonic contributions determination on condition of changing background harmonic impedance[J]. Electrical Measurement & Instrumentation, 2016, 53 (23): 78- 83, 89.
DOI |
|
23 | 国家电网公司. 电能质量评估技术导则: Q/GDW 651—2011[S]. 2008. |
State Grid Corporation of China. Technical guide for power quality assessment: Q/GDW 651—2011[S]. 2008. | |
24 | 韩兴磊. 住宅非侵入式负荷监测算法研究[D]. 广州: 华南理工大学, 2018. |
HAN Xinglei. Research on non-intrusive load monitoring algorithms in residential building[D]. Guangzhou: South China University of Technology, 2018. | |
25 |
张斌, 庄池杰, 胡军, 等. 结合降维技术的电力负荷曲线集成聚类算法[J]. 中国电机工程学报, 2015, 35 (15): 3741- 3749.
DOI |
ZHANG Bin, ZHUANG Chijie, HU Jun, et al. Ensemble clustering algorithm combined with dimension reduction techniques for power load profiles[J]. Proceedings of the CSEE, 2015, 35 (15): 3741- 3749.
DOI |
|
26 | 张逸, 王攸然, 刘航, 等. 基于监测数据相关性分析的用户谐波责任划分方法[J]. 电力系统自动化, 2020, 44 (2): 189- 197. |
ZHANG Yi, WANG Youran, LIU Hang, et al. Determination method of user harmonic responsibility based on correlation analysis of monitoring data[J]. Automation of Electric Power Systems, 2020, 44 (2): 189- 197. | |
27 | 刘子腾. 考虑背景谐波电压波动的配电网谐波责任评估[D]. 北京: 华北电力大学, 2021. |
LIU Ziteng. Harmonic contribution determination of distribution network considering background harmonic voltage fluctuation[D]. Beijing: North China Electric Power University, 2021. | |
28 |
SOUZA L C, SOUZA R M C R, AMARAL G J A, et al. A parametrized approach for linear regression of interval data[J]. Knowledge-Based Systems, 2017, 131, 149- 159.
DOI |
[1] | 陈仕龙, 吴涛, 郭成, 毕贵红, 钱永亮. 基于相关性分析的电网非同步监测数据场景谐波责任划分[J]. 中国电力, 2025, 58(1): 15-25. |
[2] | 杨帆, 卫水平, 任意, 陈秭龙, 乐健. 变权-混合决策评估的复合功能并网逆变器多目标协同优化控制方法[J]. 中国电力, 2024, 57(3): 113-125. |
[3] | 张博智, 张茹, 焦东翔, 王龙宇, 周一凡, 周丽霞. 基于VMD-SAST的电能质量扰动分类识别方法[J]. 中国电力, 2024, 57(2): 34-40. |
[4] | 李天楚, 容斌, 伍智鹏, 黄珏, 黄开来, 杨刚, 易杨. 基于边缘计算的风电群非故意发射超高次谐波抑制策略[J]. 中国电力, 2023, 56(8): 200-206,215. |
[5] | 杨嘉伟, 易杨, 姜浩, 朱林, 姚志伟. 基于随机载波脉冲宽度调制的变换器群超高次谐波抑制机理[J]. 中国电力, 2023, 56(11): 160-167. |
[6] | 于永军, 许立国, 林子杰, 孙冰涵, 刘秋降, 吴振升, 任之杰. 基于级联H桥变流器的风电网宽频带谐波阻抗测量装置[J]. 中国电力, 2022, 55(11): 73-83. |
[7] | 张健, 于浩, 梁建权, 王悦, 刘贺千. 基于数据驱动的多污染模式电能质量耦合性评估[J]. 中国电力, 2022, 55(11): 84-90. |
[8] | 胡翀, 徐斌, 甄超, 赵新德, 王昕, 唐兴勇. 基于电压暂降监测数据的敏感负荷非侵入式识别方法[J]. 中国电力, 2021, 54(8): 35-42,51. |
[9] | 温才权, 全杰雄, 周凯, 潘龙斌, 李成. 大容量SVC相控电抗器对站用低压直流电源的影响分析及防范措施[J]. 中国电力, 2021, 54(12): 45-53. |
[10] | 钟庆, 姚蔚琳, 许中, 周凯, 王钢. 基于平均点线距的电压暂降系统级评估方法[J]. 中国电力, 2020, 53(11): 9-14. |
[11] | 卓放, 杨泽斌, 易皓, 杨光宇, 王蒙, 阴晓晴, 朱承治. 综合配网谐波及三相不平衡评价指标的治理设备优化配置策略[J]. 中国电力, 2020, 53(11): 40-49. |
[12] | 赵健, 王奕凡, 谢桦, 周宁, 孙芊. 高渗透率可再生能源接入系统中储能应用综述[J]. 中国电力, 2019, 52(4): 167-177. |
[13] | 盛四清, 王佳琦. 基于改进QPSO形态滤波器的电能质量暂态扰动检测[J]. 中国电力, 2017, 50(6): 95-100. |
[14] | 宫成, 王卫, 马龙飞, 张宝群, 焦然, 丁屹峰, 陈建树, 杨烁. UPQC在电动汽车充电站电能质量治理中的应用[J]. 中国电力, 2017, 50(6): 165-171. |
[15] | 李林辉, 杨军飞, 谈军, 吴猛, 殷成才. 电能质量在线监测系统的设计与实现[J]. 中国电力, 2017, 50(5): 126-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||