[1] IRENA. Renewable energy statistics 2021[R]. 2021. [2] 黄碧斌, 张运洲, 王彩霞. 中国“十四五”新能源发展研判及需要关注的问题[J]. 中国电力, 2020, 53(1): 1–9 HUANG Bibin, ZHANG Yunzhou, WANG Caixia. New energy development and issues in China during the 14 th five-year plan[J]. Electric Power, 2020, 53(1): 1–9 [3] 全国电压电流等级和频率标准化技术委员会. 电能质量标准应用指南[M]. 北京: 中国标准出版社, 2018: 179–182. [4] 陈露洁, 徐式蕴, 孙华东, 等. 高比例电力电子电力系统宽频带振荡研究综述[J]. 中国电机工程学报, 2021, 41(7): 2297–2310 CHEN Lujie, XU Shiyun, SUN Huadong, et al. A survey on wide-frequency oscillation for power systems with high penetration of power electronics[J]. Proceedings of the CSEE, 2021, 41(7): 2297–2310 [5] 尹梦雪, 刘辉, 李蕴红, 等. 风电-串补输电系统次同步谐振特性与风电机组数量及线路参数关系研究[J]. 太阳能学报, 2021, 42(1): 174–179 YIN Mengxue, LIU Hui, LI Yunhong, et al. Research on impact on sub-synchronous resonance risk from DFIG number and grid structure in Guyuan area[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 174–179 [6] 朱明星, 孔彬彬, 张华赢. 电缆化配电系统高频谐振频移方法[J]. 中国电力, 2021, 54(8): 19–26 ZHU Mingxing, KONG Binbin, ZHANG Huaying. High frequency resonance frequency shift method for cable distribution system[J]. Electric Power, 2021, 54(8): 19–26 [7] 秦垚, 王晗, 庄圣伦, 等. 海上风电场集电网的高频谐振分析[J/OL]. 中国电机工程学报: 1-15[2021-08-10]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210810.1001.002.html. QIN Yao, WANG Han, ZHUANG Shenglun et al. Analysis on high frequency resonance of collector network in offshore wind farm[J]. Proceedings of the CSEE: 1–15[2021-08-10]. http://kns.cnki.net/kcms/detail/11.2107.TM.20210810.1001.002.html. [8] 伍文华, 周乐明, 陈燕东, 等. 序阻抗视角下虚拟同步发电机与传统并网逆变器的稳定性对比分析[J]. 中国电机工程学报, 2019, 39(5): 1411–1421 WU Wenhua, ZHOU Leming, CHEN Yandong, et al. Stability comparison and analysis between the virtual synchronous generator and the traditional grid-connected inverter in the view of sequence impedance[J]. Proceedings of the CSEE, 2019, 39(5): 1411–1421 [9] CESPEDES M, SUN J. Impedance modeling and analysis of grid-connected voltage-source converters[J]. IEEE Transactions on Power Electronics, 2014, 29(3): 1254–1261. [10] SUN J. Impedance-based stability criterion for grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3075–3078. [11] 李光辉, 王伟胜, 刘纯, 等. 基于控制硬件在环的风电机组阻抗测量及影响因素分析[J]. 电网技术, 2019, 43(5): 1624–1631 LI Guanghui, WANG Weisheng, LIU Chun, et al. Impedance measurement and influence factors analysis for wind turbines based on control-hardware-in-the-loop[J]. Power System Technology, 2019, 43(5): 1624–1631 [12] 李光辉, 王伟胜, 张兴, 等. 考虑机侧模型的直驱风电机组序阻抗建模及分析[J]. 中国电机工程学报, 2019, 39(21): 6200–6212 LI Guanghui, WANG Weisheng, ZHANG Xing, et al. Sequence impedance modeling and analysis of permanent magnet synchronous generator considering machine side model[J]. Proceedings of the CSEE, 2019, 39(21): 6200–6212 [13] 刘威, 刘杰, 吴小丹, 等. 风电场阻抗模型的现场测试[J]. 中国电机工程学报, 2020, 40(增刊1): 91–97 LIU Wei, LIU Jie, WU Xiaodan, et al. Identifying impedance models of wind farms with field tests[J]. Proceedings of the CSEE, 2020, 40(S1): 91–97 [14] 伍文华, 蒲添歌, 陈燕东, 等. 兆瓦级宽频带阻抗测量装置设计及其控制方法[J]. 中国电机工程学报, 2018, 38(14): 4096–4106,4314 WU Wenhua, PU Tiange, CHEN Yandong, et al. Megawatt wide-bandwidth impedance measurement device design and its control method[J]. Proceedings of the CSEE, 2018, 38(14): 4096–4106,4314 [15] 蒲添歌. 新能源发电阻抗特性测量技术及装备研究[D]. 长沙: 湖南大学, 2018: 17–22. PU Tiange. Measurement technology and equipment for impedance characteristics of new generation power generation[D]. Changsha: Hunan University, 2018: 17–22. [16] 谢志为, 陈燕东, 伍文华, 等. 双模式扰动下新能源发电装备的宽频带序阻抗在线精确测量方法[J]. 中国电机工程学报, 2020, 40(9): 2903–2914 XIE Zhiwei, CHEN Yandong, WU Wenhua, et al. A wide-bandwidth sequence-impedance online precise measurement method for renewable energy generation equipment with dual-mode disturbance[J]. Proceedings of the CSEE, 2020, 40(9): 2903–2914 [17] 刘秋降, 吴命利, 左超. 基于级联H桥变流器的牵引网谐波阻抗测量装置[J]. 铁道学报, 2018, 40(5): 53–58 LIU Qiujiang, WU Mingli, ZUO Chao. Harmonic impedance measuring apparatus for traction power supply system based on cascaded H-bridge converters[J]. Journal of the China Railway Society, 2018, 40(5): 53–58 [18] 刘秋降, 吴命利, 张俊骐, 等. 基于分层控制策略的牵引供电系统谐波阻抗测试装置[J]. 电工技术学报, 2018, 33(13): 3098–3108 LIU Qiujiang, WU Mingli, ZHANG Junqi, et al. Harmonic impedance measuring apparatus of traction power supply system based on hierarchical control strategy[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3098–3108 [19] WU M L, LI J, LIU Q J, et al. Measurement of impedance-frequency property of traction network using cascaded H-bridge converters: device design and on-site test[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 746–756. [20] LIU Q J, WU M L, ZHANG J Q, et al. Resonant frequency identification based on harmonic injection measuring method for traction power supply systems[J]. IET Power Electronics, 2018, 11(3): 585–592. [21] 吴俊勇, 夏明超, 徐丽杰. 电力系统分析[M]. 北京: 清华大学出版社, 2012: 135–136. [22] 季振东, 孙毅超, 李东野, 等. 星形和三角形连接的链式H桥STATCOM不平衡补偿分析[J]. 高电压技术, 2015, 41(7): 2435–2444 JI Zhendong, SUN Yichao, LI Dongye, et al. Comparative analysis for unbalance compensation of cascaded H-bridge STATCOMs between star and delta configuration[J]. High Voltage Engineering, 2015, 41(7): 2435–2444 [23] PENG F Z, WANG J. A universal STATCOM with delta-connected cascade multilevel inverter[C]//2004 IEEE 35 th Annual Power Electronics Specialists Conference. Aachen, Germany. IEEE, 2004: 3529–3533. [24] HOLMES D G, MCGRATH B P. Opportunities for harmonic cancellation with carrier-based PWM for a two-level and multilevel cascaded inverters[J]. IEEE Transactions on Industry Applications, 2001, 37(2): 574–582. [25] HOLMES D G, LIPO T A. 电力电子变换器PWM技术原理与实践[M]. 周克亮, 译. 北京: 人民邮电出版社, 2010: 81–108.
|