[1] 裴哲义, 丁杰, 李晨, 等. 分布式光伏并网问题分析与建议[J]. 中国电力, 2018, 51(10): 80–87 PEI Zheyi, DING Jie, LI Chen, et al. Analysis and suggestion for distributed photovoltaic generation[J]. Electric Power, 2018, 51(10): 80–87 [2] 康鹏, 郭伟, 黄伟钢, 等. 区域电网电能质量问题及治理关键技术综述[J]. 电测与仪表, 2020, 57(24): 1–12 KANG Peng, GUO Wei, HUANG Weigang, et al. Review of the power quality problem and key treatment technology of regional power grid[J]. Electrical Measurement & Instrumentation, 2020, 57(24): 1–12 [3] 卓放, 杨泽斌, 易皓, 等. 综合配网谐波及三相不平衡评价指标的治理设备优化配置策略[J]. 中国电力, 2020, 53(11): 40–49 ZHUO Fang, YANG Zebin, YI Hao, et al. Optimal allocation strategy for power quality control devices based on harmonic and three-phase unbalance comprehensive evaluation indices for distribution network[J]. Electric Power, 2020, 53(11): 40–49 [4] 刘颖英, 冯丹丹, 林才华, 等. 电能质量综合评估研究现状及发展趋势[J]. 电力系统保护与控制, 2020, 48(4): 167–176 LIU Yingying, FENG Dandan, LIN Caihua, et al. Current status and development trend of power quality comprehensive assessment[J]. Power System Protection and Control, 2020, 48(4): 167–176 [5] 张文海, 肖先勇, 汪颖. 人工智能算法在电能质量领域的应用[J]. 供用电, 2020, 37(9): 3–8,16 ZHANG Wenhai, XIAO Xianyong, WANG Ying. The application of artificial intelligence in power quality[J]. Distribution & Utilization, 2020, 37(9): 3–8,16 [6] 曲广龙, 杨洪耕. 基于梯形云模型的电能质量数据关联性挖掘方法[J]. 电力系统自动化, 2015, 39(7): 145–150 QU Guanglong, YANG Honggeng. A correlation mining method for power quality data based on trapezoidal cloud model[J]. Automation of Electric Power Systems, 2015, 39(7): 145–150 [7] 刘慧婷, 倪志伟, 李建洋. 时间序列相似模式的有效匹配[J]. 计算机辅助设计与图形学学报, 2007, 19(6): 725–729 LIU Huiting, NI Zhiwei, LI Jianyang. An effective algorithm to match similar time series pattern[J]. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(6): 725–729 [8] 吴晓升, 江岳文. 基于去趋势互相关分析法的光照、温度和风速互相关性分析[J]. 中国电力, 2020, 53(6): 97–106,123 WU Xiaosheng, JIANG Yuewen. A cross-correlation analysis of irradiation, temperature and wind speed based on detrended cross-correlation method[J]. Electric Power, 2020, 53(6): 97–106,123 [9] 吴迪. 基于曲线相似性分析的窃电用户判断[J]. 中国电力, 2017, 50(2): 181–184 WU Di. Electricity theft identification method based on curve similarity[J]. Electric Power, 2017, 50(2): 181–184 [10] 陈海燕, 刘晨晖, 孙博. 时间序列数据挖掘的相似性度量综述[J]. 控制与决策, 2017, 32(1): 1–11 CHEN Haiyan, LIU Chenhui, SUN Bo. Survey on similarity measurement of time series data mining[J]. Control and Decision, 2017, 32(1): 1–11 [11] 宋转, 廖小飞, 肖瑞. 不确定时间序列的相似性匹配研究[J]. 计算机应用研究, 2014, 31(11): 3349–3352 SONG Zhuan, LIAO Xiaofei, XIAO Rui. Similarity matching for uncertain time series[J]. Application Research of Computers, 2014, 31(11): 3349–3352 [12] 姜逸凡, 叶青. 基于孪生神经网络的时间序列相似性度量[J]. 计算机应用, 2019, 39(4): 1041–1045 JIANG Yifan, YE Qing. Time series similarity measure based on siamese neural network[J]. Journal of Computer Applications, 2019, 39(4): 1041–1045 [13] 孟晓静, 万源. 自适应代价动态时间弯曲的多元时间序列相似性度量[J]. 统计与决策, 2020, 36(2): 25–29 MENG Xiaojing, WAN Yuan. Multivariate time series similarity measure for dynamic time warping of adaptive cost[J]. Statistics & Decision, 2020, 36(2): 25–29 [14] 程瑛颖, 杜杰, 周全, 等. 基于随机矩阵理论和聚类算法的电能表运行状态评估方法[J]. 中国电力, 2020, 53(11): 116–125 CHENG Yingying, DU Jie, ZHOU Quan, et al. Evaluation method for running state of electricity meters based on random matrix theory and clustering algorithm[J]. Electric Power, 2020, 53(11): 116–125 [15] 宋军英, 崔益伟, 李欣然, 等. 改进分段线性表示与动态时间弯曲相结合的负荷曲线聚类方法[J]. 电力系统自动化, 2021, 45(2): 89–96 SONG Junying, CUI Yiwei, LI Xinran, et al. Load curve clustering method combining improved piecewise linear representation and dynamic time warping[J]. Automation of Electric Power Systems, 2021, 45(2): 89–96 [16] 石亮缘, 周任军, 李娟, 等. 基于时间序列相似性度量的新能源-负荷特性指标[J]. 电力自动化设备, 2019, 39(5): 75–81 SHI Liangyuan, ZHOU Renjun, LI Juan, et al. New energy-load characteristic index based on time series similarity measurement[J]. Electric Power Automation Equipment, 2019, 39(5): 75–81 [17] 张忠会, 刘故帅, 谢义苗, 等. 基于谱聚类的城市低电压分区治理决策[J]. 中国电力, 2016, 49(10): 101–105 ZHANG Zhonghui, LIU Gushuai, XIE Yimiao, et al. Treatment decision-making of partition in low voltage based on spectral clustering in urban power system[J]. Electric Power, 2016, 49(10): 101–105 [18] 李克明, 江亚群, 黄世付, 等. 基于DTW距离和聚类分析的配电台区低压拓扑结构辨识方法[J]. 电力系统保护与控制, 2021, 49(14): 29–36 LI Keming, JIANG Yaqun, HUANG Shifu, et al. Topology identification method of a low-voltage distribution station area based on DTW distance and cluster analysis[J]. Power System Protection and Control, 2021, 49(14): 29–36 [19] 伍双喜, 徐衍会, 宫晓珊. 非正弦周期性负荷扰动引发强迫振荡机理分析[J]. 电力自动化设备, 2018, 38(8): 74–80 WU Shuangxi, XU Yanhui, GONG Xiaoshan. Mechanism analysis of forced oscillation caused by non-sinusoidal periodic load disturbance[J]. Electric Power Automation Equipment, 2018, 38(8): 74–80 [20] 王长浩, 刘洋, 许立雄. 考虑风电和负荷不确定冷热电联供微网日前经济调度[J]. 中国电力, 2020, 53(8): 50–59 WANG Changhao, LIU Yang, XU Lixiong. Day-ahead economic dispatch for a combined cooling, heat and power microgrid system considering wind power and load uncertainty[J]. Electric Power, 2020, 53(8): 50–59 [21] YAHYAIE F, LEHN P W. On dynamic evaluation of harmonics using generalized averaging techniques[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2216–2224. [22] 杨为, 柯艳国, 朱胜龙, 等. 基于样条插值和线性拟合分析的高压断路器弹簧机构状态检测[J]. 高压电器, 2017, 53(6): 147–153 YANG Wei, KE Yanguo, ZHU Shenglong, et al. Condition detection of spring mechanism of high-voltage circuit breaker based on spline interpolation and linear fitting analysis[J]. High Voltage Apparatus, 2017, 53(6): 147–153 [23] WANG D, LU H C, BO C J. Fast and robust object tracking via probability continuous outlier model[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5166–5176. [24] FABOZZI D, VAN CUTSEM T. Assessing the proximity of time evolutions through dynamic time warping[J]. IET Generation, Transmission & Distribution, 2011, 5(12): 1268. [25] 惠锦, 杨洪耕, 叶茂清. 多谐波源条件下的谐波污染责任划分研究[J]. 中国电机工程学报, 2011, 31(13): 48–54 HUI Jin, YANG Honggeng, YE Maoqing. Research on the responsibility partition of harmonic pollution of multiple harmonic sources[J]. Proceedings of the CSEE, 2011, 31(13): 48–54
|