中国电力 ›› 2024, Vol. 57 ›› Issue (5): 61-69.DOI: 10.11930/j.issn.1004-9649.202306066
• 新型电力系统源网荷储灵活资源运营及关键技术 • 上一篇 下一篇
收稿日期:
2023-06-19
接受日期:
2023-09-06
出版日期:
2024-05-28
发布日期:
2024-05-16
作者简介:
刘航(1986—),男,高级工程师,从事电力系统运行与控制研究,E-mail:286471312@qq.com基金资助:
Hang LIU1(), Hao SHEN1, Yong YANG1, Ling JI2, Yang YU3(
)
Received:
2023-06-19
Accepted:
2023-09-06
Online:
2024-05-28
Published:
2024-05-16
Supported by:
摘要:
相比于普通电动汽车,纯电重卡具有更高的充电功率、更大的电池容量和更可观的调度潜力,同时受货物重量、物流特性及行驶路径等诸多因素影响,其充电负荷呈现更大的随机性,建立准确的纯电重卡集群负荷预测模型有利于掌握其充电规律,降低对电网的冲击。为此,提出了考虑物流特性基于高阶马尔科夫链的纯电重卡集群负荷预测方法。首先,在考虑软时间窗约束实现纯电重卡路径规划的基础上,通过分析纯电重卡行驶特性预测其开始充电时间,以获取各时刻纯电重卡充电数量;其次,对纯电重卡的荷电状态区间进行模糊双层离散化分区处理,将每个大区间进一步细分为n个小区间,提高预测精度;然后,在求取纯电重卡荷电状态多步转移概率基础上,采用高阶马尔可夫链建立集群负荷预测模型,实现更为精确的负荷预测;最后,采用某物流园区实际纯电重卡数据进行仿真验证,结果表明,所构建的负荷预测模型较准确地预测了纯电重卡集群功率,同时减小了普通马尔科夫链方法的预测误差。
刘航, 申皓, 杨勇, 纪陵, 余洋. 基于高阶马尔可夫链的纯电重卡集群负荷预测[J]. 中国电力, 2024, 57(5): 61-69.
Hang LIU, Hao SHEN, Yong YANG, Ling JI, Yang YU. Load Forecast of Electric Trucks Aggregation Based on Higher-order Markov Chains[J]. Electric Power, 2024, 57(5): 61-69.
道路等级 | c1 | c2 | c3 | c4 | p1 | p2 | p3 | p4 | ||||||||
快速 | 0.9526 | 1 | 3 | 3 | 0.0405 | 500 | 3 | 3 | ||||||||
普通 | 0.9526 | 1 | 2 | 2 | 0.0405 | 500 | 2 | 2 |
表 1 道路拓扑图涉及的自适应系数取值
Table 1 The adaptive coefficients involved in the road topology map
道路等级 | c1 | c2 | c3 | c4 | p1 | p2 | p3 | p4 | ||||||||
快速 | 0.9526 | 1 | 3 | 3 | 0.0405 | 500 | 3 | 3 | ||||||||
普通 | 0.9526 | 1 | 2 | 2 | 0.0405 | 500 | 2 | 2 |
参数名称 | 参数值 | |
ET电池容量/(kW·h) | 300 | |
计划充放电功率/kW | 200 | |
充放电效率/% | 94 |
表 2 参数设置
Table 2 Parameter Setting
参数名称 | 参数值 | |
ET电池容量/(kW·h) | 300 | |
计划充放电功率/kW | 200 | |
充放电效率/% | 94 |
1 | 彭云, 李相达, 王文渊, 等. 绿色集装箱港口节能减排策略综述[J]. 交通运输工程学报, 2022, 22 (4): 28- 46. |
PENG Yun, LI Xiangda, WANG Wenyuan, et al. Review on energy saving and emission reduction strategies of green container ports[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (4): 28- 46. | |
2 |
DUAN X Y, HU Z C, SONG Y H. Bidding strategies in energy and reserve markets for an aggregator of multiple EV fast charging stations with battery storage[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (1): 471- 482.
DOI |
3 |
LOPEZ K L, GAGNE C, GARDNER M A. Demand-side management using deep learning for smart charging of electric vehicles[J]. IEEE Transactions on Smart Grid, 2019, 10 (3): 2683- 2691.
DOI |
4 | 文家燕, 闻海潮, 程洋, 等. 基于GWO-NSGA-Ⅱ混合算法的露天矿低碳运输调度[J]. 工矿自动化, 2023, 49 (2): 94- 101. |
WEN Jiayan, WEN Haichao, CHENG Yang, et al. Low-carbon transportation scheduling of open-pit mine based on GWO-NSGA-Ⅱ hybrid algorithm[J]. Journal of Mine Automation, 2023, 49 (2): 94- 101. | |
5 | 陈蓉珺, 何永秀, 陈奋开, 等. 基于系统动力学和蒙特卡洛模拟的电动汽车日负荷远期预测[J]. 中国电力, 2018, 51 (9): 126- 134. |
CHEN Rongjun, HE Yongxiu, CHEN Fenkai, et al. Long-term daily load forecast of electric vehicle based on system dynamics and Monte Carlo simulation[J]. Electric Power, 2018, 51 (9): 126- 134. | |
6 | 余军伟, 孙云莲, 张笑迪. 考虑发展不均衡的电动汽车充电负荷预测[J]. 电测与仪表, 2019, 56 (5): 43- 50. |
YU Junwei, SUN Yunlian, ZHANG Xiaodi. Charging load forecasting considering the unbalanced development of EV[J]. Electrical Measurement & Instrumentation, 2019, 56 (5): 43- 50. | |
7 | 赵书强, 周靖仁, 李志伟, 等. 基于出行链理论的电动汽车充电需求分析方法[J]. 电力自动化设备, 2017, 37 (8): 105- 112. |
ZHAO Shuqiang, ZHOU Jingren, LI Zhiwei, et al. EV charging demand analysis based on trip chain theory[J]. Electric Power Automation Equipment, 2017, 37 (8): 105- 112. | |
8 | 锁军, 李龙, 贺瀚青, 等. 考虑交通路况的电动汽车充电负荷预测[J]. 电网与清洁能源, 2022, 38 (10): 141- 147. |
SUO Jun, LI Long, HE Hanqing, et al. Load forecasting of electric vehicle charging considering traffic conditions[J]. Power System and Clean Energy, 2022, 38 (10): 141- 147. | |
9 | 蒋怡静, 于艾清, 黄敏丽. 考虑用户满意度的电动汽车时空双尺度有序充电引导策略[J]. 中国电力, 2020, 53 (4): 122- 130. |
JIANG Yijing, YU Aiqing, HUANG Minli. Coordinated charging guiding strategy for electric vehicles in temporalspatial dimension considering user satisfaction degree[J]. Electric Power, 2020, 53 (4): 122- 130. | |
10 | 刘志强, 张谦, 朱熠, 等. 计及车-路-站-网融合的电动汽车充电负荷时空分布预测[J]. 电力系统自动化, 2022, 46 (12): 36- 45. |
LIU Zhiqiang, ZHANG Qian, ZHU Yi, et al. Spatial-temporal distribution prediction of charging loads for electric vehicles considering vehicle-road-station-grid integration[J]. Automation of Electric Power Systems, 2022, 46 (12): 36- 45. | |
11 |
PERTL M, CARDUCCI F, TABONE M, et al. An equivalent time-variant storage model to harness EV flexibility: forecast and aggregation[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (4): 1899- 1910.
DOI |
12 |
JIN Y W, YU B, SEO M, et al. Optimal aggregation design for massive V2G participation in energy market[J]. IEEE Access, 2020, 8, 211794- 211808.
DOI |
13 |
DABBAGHJAMANESH M, MOEINI A, KAVOUSI-FARD A. Reinforcement learning-based load forecasting of electric vehicle charging station using Q-learning technique[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (6): 4229- 4237.
DOI |
14 |
ZHANG X, CHAN K W, LI H, et al. Deep-learning-based probabilistic forecasting of electric vehicle charging load with a novel queuing model[J]. IEEE Trans Cybern, 2021, 51 (6): 3157- 3170.
DOI |
15 | 郄朝辉, 李威, 崔晓丹, 等. 基于分层马尔可夫的可修复稳定控制系统可靠性分析[J]. 中国电力, 2020, 53 (3): 101- 109. |
QIE Zhaohui, LI Wei, CUI Xiaodan, et al. Reliability analysis of repairable stability control system based on hierarchical Markov[J]. Electric Power, 2020, 53 (3): 101- 109. | |
16 |
ZHANG Q, CHEN X, LIAO S Y. Energy management control strategy for hybrid energy storage systems in electric vehicles[J]. International Journal of Electrochemical Science, 2022, 17 (1): 220121.
DOI |
17 |
KIANI S, SHESHYEKANI K, DAGDOUGUI H. An extended state space model for aggregation of large-scale EVs considering fast charging[J]. IEEE Transactions on Transportation Electrification, 2023, 9 (1): 1238- 1251.
DOI |
18 |
LIN X Y, ZHANG G J, WEI S S. Velocity prediction using Markov Chain combined with driving pattern recognition and applied to Dual-Motor Electric Vehicle energy consumption evaluation[J]. Applied Soft Computing, 2021, 101, 106998.
DOI |
19 |
ALJOHANI TAWFIQ M, AHMED E, OSAMA M. Real-Time metadata-driven routing optimization for electric vehicle energy consumption minimization using deep reinforcement learning and Markov chain model[J]. Electric Power Systems Research, 2021, 192, 106962.
DOI |
20 |
SHEN H R, WANG Z J, ZHOU X Y, et al. Electric vehicle velocity and energy consumption predictions using transformer and markov-chain Monte Carlo[J]. IEEE Transactions on Transportation Electrification, 2022, 8 (3): 3836- 3847.
DOI |
21 |
DING T, ZENG Z Y, BAI J W, et al. Optimal electric vehicle charging strategy with Markov decision process and reinforcement learning technique[J]. IEEE Transactions on Industry Applications, 2020, 56 (5): 5811- 5823.
DOI |
22 | 董锴, 蔡新雷, 崔艳林, 等. 基于马尔科夫链的电动汽车聚合建模及多模式调频控制策略[J]. 电网技术, 2022, 46 (2): 622- 634. |
DONG Kai, CAI Xinlei, CUI Yanlin, et al. Aggregation modeling based on Markov chain and multi-mode control strategies of aggregated electric vehicles for frequency regulation[J]. Power System Technology, 2022, 46 (2): 622- 634. |
[1] | 孙庆超, 李嘉靓, 江万里, 王若愚, 李植鹏, 胡亚荣, 朱健斌. 基于数据驱动时空网络的城市中长期电力负荷预测[J]. 中国电力, 2025, 58(3): 168-174. |
[2] | 王宇飞, 杜桐, 边伟国, 张钊, 刘慧婷, 杨丽君. 基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测[J]. 中国电力, 2024, 57(6): 121-130. |
[3] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[4] | 陈中飞, 赵越, 蔡秋娜, 张乔榆, 王泽林, 戴晓娟, 陈雨果. 基于净负荷预测误差统计的电力系统爬坡能力充裕度评估[J]. 中国电力, 2024, 57(5): 50-60. |
[5] | 李丹, 贺帅, 颜伟, 胡越, 方泽仁, 梁云嫣. 考虑动态时间锚点和典型特征约束的年日均负荷曲线预测[J]. 中国电力, 2024, 57(11): 36-47. |
[6] | 周颖, 白雪峰, 王阳, 邱敏, 孙冲, 武亚杰, 李彬. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57(1): 9-17. |
[7] | 唐旭辰, 潮铸, 段秦尉, 苏炳洪, 陈卉灿. 基于分层测量数据的高压变电站概率负荷预测方法[J]. 中国电力, 2023, 56(8): 143-150. |
[8] | 贾巍, 黄裕春. 基于小样本数据差分扩容的微电网负荷预测方法[J]. 中国电力, 2023, 56(8): 151-156,165. |
[9] | 彭生江, 杨德州, 孙传帅, 袁铁江, 刘永成. 基于氢负荷需求的氢能系统容量规划[J]. 中国电力, 2023, 56(7): 13-20,32. |
[10] | 杨喜行, 黄纯, 申亚涛, 胡念恩, 万子恒. 基于损失功率匹配的配电线路故障定位方法[J]. 中国电力, 2022, 55(8): 113-120. |
[11] | 李文武, 石强, 李丹, 胡群勇, 唐芸, 梅锦超. 基于VMD和PSO-SVR的短期电力负荷多阶段优化预测[J]. 中国电力, 2022, 55(8): 171-177. |
[12] | 徐宇颂, 邹山花, 卢先领. 基于特征选择和组合模型的短期电力负荷预测[J]. 中国电力, 2022, 55(7): 121-127. |
[13] | 李丹, 张远航, 李黄强, 童华敏, 王凌云. 基于精准气象数据的地区电网短期负荷智能预测系统设计[J]. 中国电力, 2022, 55(7): 128-133. |
[14] | 郑豪丰, 杨国华, 康文军, 刘志远, 刘世涛, 伍弘, 张鸿皓. 基于多负荷特征和TCN-GRU神经网络的负荷预测[J]. 中国电力, 2022, 55(11): 142-148. |
[15] | 樊江川, 于昊正, 刘慧婷, 杨丽君, 安佳坤. 基于多分支门控残差卷积神经网络的短期电力负荷预测[J]. 中国电力, 2022, 55(11): 155-162,174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||