中国电力 ›› 2023, Vol. 56 ›› Issue (8): 143-150.DOI: 10.11930/j.issn.1004-9649.202209110

• 电网 • 上一篇    下一篇

基于分层测量数据的高压变电站概率负荷预测方法

唐旭辰, 潮铸, 段秦尉, 苏炳洪, 陈卉灿   

  1. 广东电网有限责任公司电力调度控制中心, 广东 广州 510000
  • 收稿日期:2022-09-28 修回日期:2023-06-29 发布日期:2023-08-28
  • 作者简介:唐旭辰(1993—),女,通信作者,硕士,工程师,从事电力系统运行控制,E-mail:2574266834@qq.com;潮铸(1988—),男,硕士,高级工程师,从事电力系统运行控制研究,E-mail:56544787@qq.com;段秦尉(1991—),男,博士,高级工程师,从事电力市场、需求侧响应、新能源优化研究,E-mail:9896545675@qq.com;苏炳洪(1985—),男,硕士,工程师,从事电力系统运行控制研究,E-mail:469853357@qq.com;陈卉灿(1989—),女,硕士,工程师,从事电力系统运行控制研究,E-mail:8965664437@qq.com
  • 基金资助:
    国家电网有限公司科技项目(kj-2019-028)

Probabilistic Load Forecasting Method of High Voltage Substation Based on Hierarchical Measurement Data

TANG Xuchen, CHAO Zhu, DUAN Qinwei, SU Binghong, CHEN Huican   

  1. Dispatching and Control Center, Guangdong Power Grid Co., Ltd., Guangzhou 510000, China
  • Received:2022-09-28 Revised:2023-06-29 Published:2023-08-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.kj-2019-028)

摘要: 近年来,电力系统中各级量测系统的不断升级与完善使得高压变电站负荷预测精准度的进一步提高成为可能。以高压变电站以及附属的中压出线、中压配变的多级负荷数据为基础,提出一种基于中压出线与中压配电的自下而上的概率负荷预测方法,分析结果的分布特性并完成负荷的累加。此外,为提高预测精度,采用概率预测方法对网损与测量误差造成的预测偏差展开修正。算例分析结果表明,所提方法的综合评价较优,不仅能得到高准确度的负荷点预测结果,还能划定更小的预测区间。

关键词: 分层测量数据, 高压变电站, 自下而上, 概率负荷预测

Abstract: In recent years, the continuous upgrading and improvement of measurement systems at all levels in the power system makes it possible to further improve the accuracy of load forecasting in high-voltage substations. Based on the multi-level load data of high-voltage substation and its auxiliary medium voltage outgoing line and medium voltage distribution transformer, the paper proposes a bottom-up probabilistic load forecasting method based on medium voltage outgoing line and medium voltage distribution, analyzes the distribution characteristics of the results and completes the load accumulation. In addition, in order to improve the prediction accuracy, the probability prediction method is used to correct the prediction deviation caused by network loss and measurement error. The results of example analysis show that the comprehensive evaluation of the proposed method is better. It can not only get high accuracy load point forecasting results, but also delimit smaller forecasting intervals.

Key words: layered measurement data, high voltage substation, bottom up, probabilistic load forecasting