[1] 张斌, 庄池杰, 胡军, 等. 结合降维技术的电力负荷曲线集成聚类算法[J]. 中国电机工程学报, 2015, 35(15): 3741–3749 ZHANG Bin, ZHUANG Chijie, HU Jun, et al. Ensemble clustering algorithm combined with dimension reduction techniques for power load profiles[J]. Proceedings of the CSEE, 2015, 35(15): 3741–3749 [2] 李文武, 石强, 李丹, 等. 基于VMD和PSO-SVR的短期电力负荷多阶段优化预测[J]. 中国电力, 2022, 55(8): 171–177 LI Wenwu, SHI Qiang, LI Dan, et al. Multi-stage optimization forecast of short-term power load based on VMD and PSO-SVR[J]. Electric Power, 2022, 55(8): 171–177 [3] 李丹, 张远航, 李黄强, 等. 基于精准气象数据的地区电网短期负荷智能预测系统设计[J]. 中国电力, 2022, 55(7): 128–133 LI Dan, ZHANG Yuanhang, LI Huangqiang, et al. Design of a short-term load intelligent forecasting system for regional power grid based on accurate weather data[J]. Electric Power, 2022, 55(7): 128–133 [4] 梁露, 张智晟. 基于多尺度特征增强DHTCN的电力系统短期负荷预测研究[J]. 电力系统保护与控制, 2023, 51(10): 172–179 LIANG Lu, ZHANG Zhisheng. Research on short-term load forecasting of power system based on multi-scale feature enhancement DHTCN[J]. Power System Protection and Control, 2023, 51(10): 172–179 [5] CAO Z J, WAN C, ZHANG Z J, et al. Hybrid ensemble deep learning for deterministic and probabilistic low-voltage load forecasting[J]. IEEE Transactions on Power Systems, 2020, 35(3): 1881–1897. [6] SHI H, XU M H, LI R. Deep learning for household load forecasting-a novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5271–5280. [7] 狄曙光, 刘峰, 孙建宇, 等. 基于改进ABC和IDPC-MKELM的短期电力负荷预测[J]. 智慧电力, 2022, 50(9): 74–81 DI Shuguang, LIU Feng, SUN Jianyu, et al. Short-term power load forecasting based on improved ABC and IDPC-MKELM[J]. Smart Power, 2022, 50(9): 74–81 [8] 孔祥玉, 郑锋, 鄂志君, 等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化, 2018, 42(5): 133–139 KONG Xiangyu, ZHENG Feng, E Zhijun, et al. Short-term load forecasting based on deep belief network[J]. Automation of Electric Power Systems, 2018, 42(5): 133–139 [9] 李龙, 魏靖, 黎灿兵, 等. 基于人工神经网络的负荷模型预测[J]. 电工技术学报, 2015, 30(8): 225–230 LI Long, WEI Jing, LI Canbing, et al. Prediction of load model based on artificial neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 225–230 [10] MORDJAOUI M, HADDAD S, MEDOUED A, et al. Electric load forecasting by using dynamic neural network[J]. International Journal of Hydrogen Energy, 2017, 42(28): 17655–17663. [11] 张智晟, 于道林. 考虑需求响应综合影响因素的RBF-NN短期负荷预测模型[J]. 中国电机工程学报, 2018, 38(6): 1631–1638, 1899 ZHANG Zhisheng, YU Daolin. RBF-NN based short-term load forecasting model considering comprehensive factors affecting demand response[J]. Proceedings of the CSEE, 2018, 38(6): 1631–1638, 1899 [12] KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 841–851. [13] DING N, BENOIT C, FOGGIA G, et al. Neural network-based model design for short-term load forecast in distribution systems[J]. IEEE Transactions on Power Systems, 2016, 31(1): 72–81. [14] WANG P, LIU B D, HONG T. Electric load forecasting with recency effect: a big data approach[J]. International Journal of Forecasting, 2016, 32(3): 585–597. [15] WANG Y, XIA Q, KANG C Q. Unit commitment with volatile node injections by using interval optimization[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1705–1713. [16] CHEN C S, TZENG Y M, HWANG J C. The application of artificial neural networks to substation load forecasting[J]. Electric Power Systems Research, 1996, 38(2): 153–160. [17] LI R, GU C H, LI F R, et al. Development of low voltage network templates—part I: substation clustering and classification[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3036–3044. [18] GUNGOR V C, SAHIN D, KOCAK T, et al. Smart grid technologies: communication technologies and standards[J]. IEEE Transactions on Industrial Informatics, 2011, 7(4): 529–539. [19] QUILUMBA F L, LEE W J, HUANG H, et al. Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities[J]. IEEE Transactions on Smart Grid, 2015, 6(2): 911–918. [20] STEPHEN B, TANG X Q, HARVEY P R, et al. Incorporating practice theory in sub-profile models for short term aggregated residential load forecasting[J]. IEEE Transactions on Smart Grid, 2017, 8(4): 1591–1598. [21] WANG Y, CHEN Q X, SUN M Y, et al. An ensemble forecasting method for the aggregated load with subprofiles[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3906–3908. [22] 熊军华, 牛珂, 张春歌, 等. 基于小波变异果蝇优化支持向量机短期负荷预测方法研究[J]. 电力系统保护与控制, 2017, 45(13): 71–77 XIONG Junhua, NIU Ke, ZHANG Chunge, et al. LSSVM in short-term load forecasting based on wavelet transform and mutant fruit fly optimization algorithm[J]. Power System Protection and Control, 2017, 45(13): 71–77 [23] 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37(1): 9–20 LU Zongxiang, LI Haibo, QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37(1): 9–20 [24] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893–1904, 2205 ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893–1904, 2205 [25] 谢敏, 邓佳梁, 吉祥, 等. 基于信息熵和变精度粗糙集优化的支持向量机降温负荷预测方法[J]. 电网技术, 2017, 41(1): 210–214 XIE Min, DENG Jialiang, JI Xiang, et al. Cooling load forecasting method based on support vector machine optimized with entropy and variable accuracy roughness set[J]. Power System Technology, 2017, 41(1): 210–214
|