中国电力 ›› 2024, Vol. 57 ›› Issue (11): 36-47.DOI: 10.11930/j.issn.1004-9649.202308114
李丹1(), 贺帅1(
), 颜伟2, 胡越3, 方泽仁3, 梁云嫣3
收稿日期:
2023-08-28
接受日期:
2024-02-05
出版日期:
2024-11-28
发布日期:
2024-11-27
作者简介:
李丹(1980—),女,通信作者,博士,副教授,从事负荷和新能源功率预测、电力系统不确定性分析、电力系统优化运行研究,E-mail:lucy2140@163.com基金资助:
Dan LI1(), Shuai HE1(
), Wei YAN2, Yue HU3, Zeren FANG3, Yunyan LIANG3
Received:
2023-08-28
Accepted:
2024-02-05
Online:
2024-11-28
Published:
2024-11-27
Supported by:
摘要:
基于负荷趋势性、周期性和受日历特征影响的特点,考虑动态时间锚点和典型特征约束,实现年日均负荷曲线精确预测。首先,根据历史和预测年的日历关联关系建立动态时间锚点矩阵,结合标幺化和周期平滑处理后的历史年日均负荷形状因子曲线,提出DTA-Soft-DBA方法以获得预测年的日均负荷形状因子预测曲线;然后,进行反标幺化和反周期平滑处理,并结合电力电量特征预测值进行典型特征约束修正,获得年日均负荷预测曲线。基于某地区的算例结果表明,所提方法具有更高的预测精度,其结果与典型特征预测值相吻合,符合年内时序变化规律,能有效整合具有不同日历特征的历史样本时序共性规律。
李丹, 贺帅, 颜伟, 胡越, 方泽仁, 梁云嫣. 考虑动态时间锚点和典型特征约束的年日均负荷曲线预测[J]. 中国电力, 2024, 57(11): 36-47.
Dan LI, Shuai HE, Wei YAN, Yue HU, Zeren FANG, Yunyan LIANG. Annual Daily Average Load Curve Prediction Considering Dynamic Time Anchors and Typical Feature Constraints[J]. Electric Power, 2024, 57(11): 36-47.
方法 | 2020 | 2021 | 平均指标 | |||||||||||||||
EMAPE/% | ERMSE/MW | R2 | EMAPE/% | ERMSE/MW | R2 | EMAPE/% | ERMSE/MW | R2 | ||||||||||
Holt-Winters | 14.47 | 0.28 | 8.51 | 0.44 | 11.49 | 0.36 | ||||||||||||
GM | 12.45 | 0.32 | 11.28 | 0.06 | 11.86 | 0.19 | ||||||||||||
Naive | 12.00 | 0.34 | 11.74 | –0.09 | 11.87 | 0.13 | ||||||||||||
ED | 11.98 | 0.4 | 8.32 | 0.36 | 10.15 | 0.38 | ||||||||||||
DBA | 12.32 | 0.35 | 8.56 | 0.32 | 10.44 | 0.34 | ||||||||||||
SGD-DBA | 12.17 | 0.37 | 8.51 | 0.34 | 10.34 | 0.36 | ||||||||||||
Soft-DDBA | 11.10 | 0.54 | 7.90 | 0.49 | 9.50 | 0.52 | ||||||||||||
FC-DTA-Soft-DBA | 6.87 | 0.77 | 6.79 | 0.41 | 6.83 | 0.59 |
表 1 不同方法的2020年和2021年评价指标比较
Table 1 Evaluating indicator comparison of different methods for 2020 and 2021
方法 | 2020 | 2021 | 平均指标 | |||||||||||||||
EMAPE/% | ERMSE/MW | R2 | EMAPE/% | ERMSE/MW | R2 | EMAPE/% | ERMSE/MW | R2 | ||||||||||
Holt-Winters | 14.47 | 0.28 | 8.51 | 0.44 | 11.49 | 0.36 | ||||||||||||
GM | 12.45 | 0.32 | 11.28 | 0.06 | 11.86 | 0.19 | ||||||||||||
Naive | 12.00 | 0.34 | 11.74 | –0.09 | 11.87 | 0.13 | ||||||||||||
ED | 11.98 | 0.4 | 8.32 | 0.36 | 10.15 | 0.38 | ||||||||||||
DBA | 12.32 | 0.35 | 8.56 | 0.32 | 10.44 | 0.34 | ||||||||||||
SGD-DBA | 12.17 | 0.37 | 8.51 | 0.34 | 10.34 | 0.36 | ||||||||||||
Soft-DDBA | 11.10 | 0.54 | 7.90 | 0.49 | 9.50 | 0.52 | ||||||||||||
FC-DTA-Soft-DBA | 6.87 | 0.77 | 6.79 | 0.41 | 6.83 | 0.59 |
1 |
LÓPEZ J C, RIDER M J, WU Q W. Parsimonious short-term load forecasting for optimal operation planning of electrical distribution systems[J]. IEEE Transactions on Power Systems, 2019, 34 (2): 1427- 1437.
DOI |
2 | 张籍, 薛儒涛, 刘慧, 等. 基于深度信念网络的不同行业中长期负荷预测[J]. 电力系统及其自动化学报, 2019, 31 (9): 12- 19, 27. |
ZHANG Ji, XUE Rutao, LIU Hui, et al. Medium-and long-term load forecasting for different industries based on deep belief network[J]. Proceedings of the CSU-EPSA, 2019, 31 (9): 12- 19, 27. | |
3 |
LUSIS P, KHALILPOUR K R, ANDREW L, et al. Short-term residential load forecasting: impact of calendar effects and forecast granularity[J]. Applied Energy, 2017, 205, 654- 669.
DOI |
4 |
SINGH P, DWIVEDI P. A novel hybrid model based on neural network and multi-objective optimization for effective load forecast[J]. Energy, 2019, 182, 606- 622.
DOI |
5 | SADEGHI M S. A hybrid intelligent-based linear-nonlinear model for accurate daily peak load forecasting[J]. Journal of Intelligent & Fuzzy Systems, 2014, 26 (6): 3013- 3020. |
6 | 祝青, 孟祥娟, 陈晓峰, 等. 基于时间尺度组合优化的中长期负荷预测方法[J]. 大众用电, 2021, 36 (6): 20- 22. |
7 |
ZHU K D, LI Y P, MAO W B, et al. LSTM enhanced by dual-attention-based encoder-decoder for daily peak load forecasting[J]. Electric Power Systems Research, 2022, 208, 107860.
DOI |
8 |
ZHENG H T, YUAN J B, CHEN L. Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation[J]. Energies, 2017, 10 (8): 1168.
DOI |
9 | SUN T H, ZHANG T Y, TENG Y, et al. Monthly electricity consumption forecasting method based on X12 and STL decomposition model in an integrated energy system[J]. Mathematical Problems in Engineering, 2019, 2019, 9012543. |
10 |
TRULL O, GARCÍA-DÍAZ J C, PEIRÓ-SIGNES A. Multiple seasonal STL decomposition with discrete-interval moving seasonalities[J]. Applied Mathematics and Computation, 2022, 433, 127398.
DOI |
11 | 全一鸣, 喻敏, 王文波, 等. 基于分形优化的VMD和GA-BP的短期风速预测[J]. 太阳能学报, 2023, 44 (7): 436- 446. |
QUAN Yiming, YU Min, WANG Wenbo, et al. Short-term wind speed prediction based on fractal optimization of VMD-GA-BP[J]. Acta Energiae Solaris Sinica, 2023, 44 (7): 436- 446. | |
12 |
CHEN Y T, ZHANG D X. Theory-guided deep-learning for electrical load forecasting (TgDLF) via ensemble long short-term memory[J]. Advances in Applied Energy, 2021, 1, 100004.
DOI |
13 | 张颖超, 沈子豪, 马伟叁, 等. 相似样本优化选取的短期风电功率预测[J]. 重庆理工大学学报(自然科学), 2022, (1): 277- 284. |
ZHANG Yingchao, SHEN Zihao, MA Weisan, et al. Short-term wind power forecast based on DTW similar optimization sample selection[J]. Journal of Chongqing University of Technology (Natural Science), 2022, (1): 277- 284. | |
14 |
LIANG H S, MA J. Develop load shape dictionary through efficient clustering based on elastic dissimilarity measure[J]. IEEE Transactions on Smart Grid, 2021, 12 (1): 442- 452.
DOI |
15 | CUTURI M, BLONDEL M. Soft-DTW: a differentiable loss function for time-series[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. Sydney, NSW, Australia. ACM, 2017: 894–903. |
16 |
PETITJEAN F, KETTERLIN A, GANÇARSKI P. A global averaging method for dynamic time warping, with applications to clustering[J]. Pattern Recognition, 2011, 44 (3): 678- 693.
DOI |
17 |
WANG B, TAI N L, ZHAI H Q, et al. A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting[J]. Electric Power Systems Research, 2008, 78 (10): 1679- 1685.
DOI |
18 |
丁义, 杨建. 欧式距离与标准化欧式距离在k近邻算法中的比较[J]. 软件, 2020, 41 (10): 135- 136, 140.
DOI |
DING Yi, YANG Jian. Comparison between euclidean distance and standardized euclidean distance in k-nearest neighbor algorithm[J]. Computer Engineering & Software, 2020, 41 (10): 135- 136, 140.
DOI |
|
19 | 苏振宇, 龙勇, 汪於. 基于季节调整和Holt-Winters的月度负荷预测方法[J]. 中国管理科学, 2019, 27 (3): 30- 40. |
SU Zhenyu, LONG Yong, WANG Yu. A hybrid monthly load forecasting method based on seasonal adjustment and holt-winters[J]. Chinese Journal of Management Science, 2019, 27 (3): 30- 40. | |
20 | 任峰, 李伟, 丁超. 基于灰色-周期外延组合模型的电力负荷预测[J]. 电网技术, 2007, 31 (24): 52- 54. |
REN Feng, LI Wei, DING Chao. Load forecasting based on gray-periodic extensional combinatorial model[J]. Power System Technology, 2007, 31 (24): 52- 54. | |
21 |
SCHULTZ D, JAIN B. Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces[J]. Pattern Recognition, 2018, 74, 340- 358.
DOI |
22 |
ZHANG S Y, CHEN R H, CAO J C, et al. A CNN and LSTM-based multi-task learning architecture for short and medium-term electricity load forecasting[J]. Electric Power Systems Research, 2023, 222, 109507.
DOI |
23 |
RENTACHINTALA L R N P, MUTUKURU GANGIREDDY M R, MOHAPATRA P K. Trends of surface water quality of the Krishna River, India during the urbanization process[J]. Environmental Quality Management, 2023, 32 (3): 111- 121.
DOI |
24 | 张倩, 马愿, 李国丽, 等. 频域分解和深度学习算法在短期负荷及光伏功率预测中的应用[J]. 中国电机工程学报, 2019, 39 (8): 2221- 2230. |
ZHANG Qian, MA Yuan, LI Guoli, et al. Applications of frequency domain decomposition and deep learning algorithms in short-term load and photovoltaic power forecasting[J]. Proceedings of the CSEE, 2019, 39 (8): 2221- 2230. | |
25 | 韩芳, 王学春, 靳宗信. 基于ACF的基音检测改进算法[J]. 现代电子技术, 2017, 40 (19): 71- 74, 78. |
HAN Fang, WANG Xuechun, JIN Zongxin. Improved pitch detection algorithm based on ACF[J]. Modern Electronics Technique, 2017, 40 (19): 71- 74, 78. |
[1] | 孙庆超, 李嘉靓, 江万里, 王若愚, 李植鹏, 胡亚荣, 朱健斌. 基于数据驱动时空网络的城市中长期电力负荷预测[J]. 中国电力, 2025, 58(3): 168-174. |
[2] | 王宇飞, 杜桐, 边伟国, 张钊, 刘慧婷, 杨丽君. 基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测[J]. 中国电力, 2024, 57(6): 121-130. |
[3] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[4] | 陈中飞, 赵越, 蔡秋娜, 张乔榆, 王泽林, 戴晓娟, 陈雨果. 基于净负荷预测误差统计的电力系统爬坡能力充裕度评估[J]. 中国电力, 2024, 57(5): 50-60. |
[5] | 刘航, 申皓, 杨勇, 纪陵, 余洋. 基于高阶马尔可夫链的纯电重卡集群负荷预测[J]. 中国电力, 2024, 57(5): 61-69. |
[6] | 周颖, 白雪峰, 王阳, 邱敏, 孙冲, 武亚杰, 李彬. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57(1): 9-17. |
[7] | 唐旭辰, 潮铸, 段秦尉, 苏炳洪, 陈卉灿. 基于分层测量数据的高压变电站概率负荷预测方法[J]. 中国电力, 2023, 56(8): 143-150. |
[8] | 贾巍, 黄裕春. 基于小样本数据差分扩容的微电网负荷预测方法[J]. 中国电力, 2023, 56(8): 151-156,165. |
[9] | 彭生江, 杨德州, 孙传帅, 袁铁江, 刘永成. 基于氢负荷需求的氢能系统容量规划[J]. 中国电力, 2023, 56(7): 13-20,32. |
[10] | 杨喜行, 黄纯, 申亚涛, 胡念恩, 万子恒. 基于损失功率匹配的配电线路故障定位方法[J]. 中国电力, 2022, 55(8): 113-120. |
[11] | 李文武, 石强, 李丹, 胡群勇, 唐芸, 梅锦超. 基于VMD和PSO-SVR的短期电力负荷多阶段优化预测[J]. 中国电力, 2022, 55(8): 171-177. |
[12] | 徐宇颂, 邹山花, 卢先领. 基于特征选择和组合模型的短期电力负荷预测[J]. 中国电力, 2022, 55(7): 121-127. |
[13] | 李丹, 张远航, 李黄强, 童华敏, 王凌云. 基于精准气象数据的地区电网短期负荷智能预测系统设计[J]. 中国电力, 2022, 55(7): 128-133. |
[14] | 郑豪丰, 杨国华, 康文军, 刘志远, 刘世涛, 伍弘, 张鸿皓. 基于多负荷特征和TCN-GRU神经网络的负荷预测[J]. 中国电力, 2022, 55(11): 142-148. |
[15] | 樊江川, 于昊正, 刘慧婷, 杨丽君, 安佳坤. 基于多分支门控残差卷积神经网络的短期电力负荷预测[J]. 中国电力, 2022, 55(11): 155-162,174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||