中国电力 ›› 2024, Vol. 57 ›› Issue (11): 36-47.DOI: 10.11930/j.issn.1004-9649.202308114

• 电网 • 上一篇    下一篇

考虑动态时间锚点和典型特征约束的年日均负荷曲线预测

李丹1(), 贺帅1(), 颜伟2, 胡越3, 方泽仁3, 梁云嫣3   

  1. 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002
    2. 重庆大学 电气工程学院,重庆 400044
    3. 新能源微电网湖北省协同创新中心,湖北 宜昌 443002
  • 收稿日期:2023-08-28 接受日期:2024-02-05 出版日期:2024-11-28 发布日期:2024-11-27
  • 作者简介:李丹(1980—),女,通信作者,博士,副教授,从事负荷和新能源功率预测、电力系统不确定性分析、电力系统优化运行研究,E-mail:lucy2140@163.com
    贺帅(1997—),男,硕士研究生,从事电力系统运行与控制研究,E-mail:christmashs@163.com
  • 基金资助:
    国家自然科学基金资助项目(考虑气象因素不确定性与数据降维技术的中期小时级源荷功率场景概率预测方法研究,51807109)。

Annual Daily Average Load Curve Prediction Considering Dynamic Time Anchors and Typical Feature Constraints

Dan LI1(), Shuai HE1(), Wei YAN2, Yue HU3, Zeren FANG3, Yunyan LIANG3   

  1. 1. College of Electric Engineering and New Energy, China Three Gorges University, Yichang 443002, China
    2. School of Electrical Engineering, Chongqing University, Chongqing 400044, China
    3. Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Yichang 443002, China
  • Received:2023-08-28 Accepted:2024-02-05 Online:2024-11-28 Published:2024-11-27
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Mid-term Source & Load Hourly Power Scenario Probabilistic Prediction Method Considering Uncertainty of Climatic Factors and Data Dimensionality Reduction Technology, No.51807109).

摘要:

基于负荷趋势性、周期性和受日历特征影响的特点,考虑动态时间锚点和典型特征约束,实现年日均负荷曲线精确预测。首先,根据历史和预测年的日历关联关系建立动态时间锚点矩阵,结合标幺化和周期平滑处理后的历史年日均负荷形状因子曲线,提出DTA-Soft-DBA方法以获得预测年的日均负荷形状因子预测曲线;然后,进行反标幺化和反周期平滑处理,并结合电力电量特征预测值进行典型特征约束修正,获得年日均负荷预测曲线。基于某地区的算例结果表明,所提方法具有更高的预测精度,其结果与典型特征预测值相吻合,符合年内时序变化规律,能有效整合具有不同日历特征的历史样本时序共性规律。

关键词: 负荷预测, 年日均负荷曲线, Soft-DBA, 特征约束, 日历特征

Abstract:

Based on the trends, periodicity and calendar features of power load, it is realized to accurately predict the annual daily average load curves considering the dynamic time anchors and typical feature constraints, Firstly, a dynamic time anchor matrix is built based on the calendar association between the historical year and the target year. Then, based on the historical annual daily average load shape-factor curves obtained after normalization and periodic smoothing treatment, it is proposed to use the DTA-Soft-DBA to predict the target year's daily average load shape-factor curve. After inverse normalization and inverse periodic smoothing treatment, the annual daily average load prediction curves are obtained by correcting the typical feature constraints with the predicted value of power and electricity features. The case study results of an area in China show that the proposed method has higher prediction accuracy, and the results are consistent with the predicted values of typical features and the temporal variations within the target year. The proposed method can effectively integrate the common rules of historical sample time series with different calendar characteristics, which is reasonable and interpretable.

Key words: load forecasting, annual daily average load curve, Soft-DBA, feature constraints, calendar features