中国电力 ›› 2022, Vol. 55 ›› Issue (7): 121-127.DOI: 10.11930/j.issn.1004-9649.202111045

• 电力负荷预测 • 上一篇    下一篇

基于特征选择和组合模型的短期电力负荷预测

徐宇颂1,2, 邹山花3, 卢先领1,2   

  1. 1. 江南大学 “轻工过程先进控制”教育部重点实验室,江苏 无锡 214122;
    2. 江南大学 物联网工程学院,江苏 无锡 214122;
    3. 江苏省物联网应用技术重点建设实验室,江苏 无锡 214100
  • 收稿日期:2021-11-10 修回日期:2022-05-16 出版日期:2022-07-28 发布日期:2022-07-20
  • 作者简介:徐宇颂(1996—),男,硕士,从事短期电力负荷预测研究,E-mail:2459894852@qq.com;邹山花(1972—),女,副教授,从事物联网应用技术研究,E-mail:123066625@qq.com;卢先领(1972—),男,通信作者,教授,从事无线传感器网络、大数据和数字医疗研究,E-mail:jnluxl@jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61573167);教育部科技发展中心“云数融合科教创新”基金资助项目(2017A13055)。

Short-Term Load Forecasting Based on Feature Selection and Combination Model

XU Yusong1,2, ZOU Shanhua3, LU Xianling1,2   

  1. 1. Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, China;
    2. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
    3. Jiangsu Key Construction Laboratory of IoT Application Technology, Wuxi 214100, China
  • Received:2021-11-10 Revised:2022-05-16 Online:2022-07-28 Published:2022-07-20
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.61573167), Foundation for “Integration of Cloud Computing and Big Data” of Innovation of Science and Education (No.2017 A13055)

摘要: 提出基于特征选择和组合模型的短期电力负荷预测方法。首先将特征向量按特点分为2类,分别使用斯皮尔曼相关系数、最大相关最小冗余算法进行选择,依据贝叶斯信息量准则确定最优特征向量维度。然后使用3个不同的核函数建立单核递归支持向量回归模型并完成预测。最后构建神经网络,进行实验分析。仿真结果表明所提方法具有较高的预测精度与鲁棒性。

关键词: 短期负荷预测, 支持向量回归, 浅层神经网络, 组合模型

Abstract: A short-term load forecasting method based on feature selection and combination model is proposed. At first, the method divides the feature vectors into two sets according to the individual characteristics. Spearman rank-order correlation coefficient and max-relevance & min-redundancy algorithm are individually employed for selection. Bayesian information criterion is used to get the dimension of the optimal feature vector. And then, three different simple-kernel based support vector regression models are built using three kernel functions respectively and complete prediction. Finally, a neural network is set up for experimental analysis. The simulation results show that the proposed combination model has a great high forecasting accuracy and robustness.

Key words: short-term load forecasting, support vector regression, shallow neural network, combination model