[1] BARMAN M, DEV CHOUDHURY N B, SUTRADHAR S. A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India[J]. Energy, 2018, 145: 710–720. [2] 苏振宇, 龙勇, 赵丽艳. 基于regARIMA模型的月度负荷预测效果研究[J]. 中国电力, 2018, 51(5): 166–171 SU Zhenyu, LONG Yong, ZHAO Liyan. Study on the monthly power load forecasting performance based on regARIMA model[J]. Electric Power, 2018, 51(5): 166–171 [3] 张林, 罗晓初, 徐瑞林, 等. 基于时间序列的电力负荷预测新算法研究[J]. 电网技术, 2006, 30(增刊2): 595–599 ZHANG Lin, LUO Xiaochu, XU Ruilin, et al. Study on novel algorithm based on time series in power system load forecasting[J]. Power System Technology, 2006, 30(S2): 595–599 [4] 方仍存, 周建中, 彭兵, 等. 电力负荷混沌动力特性及其短期预测[J]. 电网技术, 2008, 32(4): 61–66 FANG Rengcun, ZHOU Jianzhong, PENG Bing, et al. Chaotic dynamics of power load and its short-term forecasting[J]. Power System Technology, 2008, 32(4): 61–66 [5] 于军琪, 聂己开, 赵安军, 等. 基于特征挖掘的ARIMA-GRU短期电力负荷预测[J]. 电力系统及其自动化学报, 2022, 34(3): 91–99 YU Junqi, NIE Jikai, ZHAO Anjun, et al. ARIMA-GRU short-term power load forecasting based on feature mining[J]. Proceedings of the CSU-EPSA, 2022, 34(3): 91–99 [6] AHMAD A, JAVAID N, MATEEN A, et al. Short-term load forecasting in smart grids: an intelligent modular approach[J]. Energies, 2019, 12(1): 164. [7] 祝学昌. 基于IFOA-GRNN的短期电力负荷预测方法研究[J]. 电力系统保护与控制, 2020, 48(9): 121–127 ZHU Xuechang. Research on short-term power load forecasting method based on IFOA-GRNN[J]. Power System Protection and Control, 2020, 48(9): 121–127 [8] 张淑清, 段晓宁, 张立国, 等. Tsne降维可视化分析及飞蛾火焰优化ELM算法在电力负荷预测中应用[J]. 中国电机工程学报, 2021, 41(9): 3120–3130 ZHANG Shuqing, DUAN Xiaoning, ZHANG Liguo, et al. Tsne dimension reduction visualization analysis and moth flame optimized ELM algorithm applied in power load forecasting[J]. Proceedings of the CSEE, 2021, 41(9): 3120–3130 [9] 吕海灿, 王伟峰, 赵兵, 等. 基于Wide&Deep-LSTM模型的短期台区负荷预测[J]. 电网技术, 2020, 44(2): 428–436 Lü Haican, WANG Weifeng, ZHAO Bing, et al. Short-term substation load forecast based on Wide & Deep-LSTM model[J]. Power System Technology, 2020, 44(2): 428–436 [10] 朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-Bi LSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4532–4539 ZHU Lingjian, XUN Zihan, WANG Yuxin, et al. Short-term power load forecasting based on CNN-BiLSTM[J]. Power System Technology, 2021, 45(11): 4532–4539 [11] 魏震波, 余雷. 基于FFT, DC-HC及LSTM的短期负荷预测方法[J]. 智慧电力, 2022, 50(3): 37–43 WEI Zhenbo, YU Lei. Short-term load forecasting method based on FFT, DC-HC and LSTM[J]. Smart Power, 2022, 50(3): 37–43 [12] 王新刚, 朱彬若, 顾臻. 基于综合能源计量大数据的中长期用电量预测[J]. 中国电力, 2021, 54(10): 211–216 WANG Xingang, ZHU Binruo, GU Zhen. Mid-and-long term load forecasting based on integrated power consumption data[J]. Electric Power, 2021, 54(10): 211–216 [13] 侯慧, 王晴, 赵波, 等. 关键信息缺失下基于相空间重构及机器学习的电力负荷预测[J]. 电力系统保护与控制, 2022, 50(4): 75–82 HOU Hui, WANG Qing, ZHAO Bo, et al. Power load forecasting without key information based on phase space reconstruction and machine learning[J]. Power System Protection and Control, 2022, 50(4): 75–82 [14] 李伟, 闫宁, 张振刚. 基于粗糙集的混合支持向量机长期电力负荷预测研究[J]. 电力系统保护与控制, 2010, 38(13): 31–34 LI Wei, YAN Ning, ZHANG Zhengang. Study on long-term load forecasting of MIX-SVM based on rough set theory[J]. Power System Protection and Control, 2010, 38(13): 31–34 [15] 欧阳俊, 陆锋, 刘兴权, 等. 基于多核混合支持向量机的城市短时交通预测[J]. 中国图象图形学报, 2010, 15(11): 1688–1695 OUYANG Jun, LU Feng, LIU Xingquan, et al. Short-term urban traffic forecasting based on multi-kernel SVM model[J]. Journal of Image and Graphics, 2010, 15(11): 1688–1695 [16] CHE J X, WANG J Z. Short-term load forecasting using a kernel-based support vector regression combination model[J]. Applied Energy, 2014, 132: 602–609. [17] ZARE-NOGHABI A, SHABANZADEH M, SANGRODY H. Medium-term load forecasting using support vector regression, feature selection, and symbiotic organism search optimization[C]//2019 IEEE Power & Energy Society General Meeting. Atlanta, GA, USA. IEEE, 2019: 1-5. [18] 宋国锋. 一种基于AICc的新信息准则-bAICc[D]. 长春: 吉林大学, 2017. SONG Guofeng. A new AICc-based information criterion-bAICc[D]. Changchun: Jilin University, 2017. [19] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67–82. [20] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. [21] 金樑. SVM与神经网络的组合模型在短期电力负荷预测中的应用研究[D]. 长春: 吉林大学, 2018. JIN Liang. Research on short-term power load forecasting based on combination model of SVM and neural network[D]. Changchun: Jilin University, 2018. [22] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431–441. [23] 孔祥玉, 郑锋, 鄂志君, 等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化, 2018, 42(5): 133–139 KONG Xiangyu, ZHENG Feng, E Zhijun, et al. Short-term load forecasting based on deep belief network[J]. Automation of Electric Power Systems, 2018, 42(5): 133–139 [24] 陈如意, 江军, 陈珉, 等. 基于最大信息系数的变压器过热故障特征选择[J]. 电力工程技术, 2020, 39(2): 140–145 CHEN Ruyi, JIANG Jun, CHEN Min, et al. Feature selection of dissolved gases in power transformer based on maximal information coefficient[J]. Electric Power Engineering Technology, 2020, 39(2): 140–145 [25] 谢家安. 基于体感温度的电力系统负荷分类及负荷预测[J]. 电网与清洁能源, 2012, 28(8): 24–28 XIE Jiaan. Load classification and load forecasting of power system based on apparent temperature[J]. Power System and Clean Energy, 2012, 28(8): 24–28
|