[1] 李富生,李瑞生,周逢权.微电网技术及工程应用[M]. 北京:中国电力出版社,2012. [2] 尹昊. 新能源微电网短期负荷预测[D]. 长沙:湖南大学,2012. [3] 康重庆,夏清,刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社,2007. [4] 罗滇生,李伟伟,何洪英.基于局部形相似的超短期负荷预测方法[J].电力系统及其自动化学报,2008,20(1):75-79. LUO Diansheng, HE Hongying. A shape similarity criterion based curve fitting algorithm and its application in ultra-short-term load forecasting [J]. Proceedings of the CSU-EPSA, 2008, 20(1): 75-79. [5] 牛东晓,魏亚楠. 基于FHNN相似日聚类自适应权重的短期电力负荷组合预测[J]. 电力系统及其自动化,2013,37(3):54-57. NIU Dongxiao, WEI Yanan. Short-term power load combinatorial forecast adaptively weighted by FHNN similar-day clustering [J]. Automation of Electric Power Systems, 2013, 37(3): 54-57. [6] 黎灿兵,李晓辉,赵瑞,等. 电力短期负荷预测相似日选取算法[J]. 电力系统及其自动化,2008,32(9):69-73. LI Canbing, LI Xiaohui, ZHAO Rui, et al. A novel algorithm of selecting similar days for short-term power load forecasting[J]. Automation of Electric Power Systems, 2008, 32(9): 69-73. [7] 李鑫滨,张娟,张岩,等. 基于D-S证据理论的相似日支持向量机短期负荷预测[J]. 电网技术,2010,34(7):143-147. LI Xinbin, ZHANG Jun, ZHANG Yan, et al. Short-term load forecasting for similar days based on support vector machine and demister-shafer theory [J]. Power System Technology, 2010, 34(7): 143-147. [8] 莫维仁,张伯明,孙宏斌,等. 短期负荷预测中相似日的探讨[J]. 清华大学学报:自然科学版,2004,44(1):106-109. MO Weiren, ZHANG Boming, SUN Hongbin, et al. Method to select similar days for short-term load forecasting[J]. Tsinghua University: Science & Technology, 2004, 44(1): 106-109. [9] 杨正瓴,田勇,张广涛,等. 相似日短期负荷预测的非线性理论基础与改进[J]. 电网技术,2006,30(6):63-66. YANG Zhengling, TIAN Yong, ZHANG Guangtao, et al. Nonlinear theoretical foundation and improvement of similar days method for short term load forecasting[J]. Power System Technology, 2006, 30(6): 63-66. [10] 陈超,黄国勇,邵宗凯,等. 基于日特征量相似日的PSO-SVM短期负荷预测[J]. 中国电力,2013,46(7):69-73. CHEN Chao, HUANG Guoyong, SHAO Zongkai, et al. Short-term load forecasting for similar days based on PSO-SVM and daily feature vector [J]. Electric Power, 2013, 46(7): 69-73. [11] 王海林,赵国刚,王颖,等. 电力系统负荷分析及预测方法[J].天津电力技术,2002(3):13-15. WANG Hailin, ZHAO Guogang, WANG Ying, et al. Analysis of power load and its forecasting[J]. Tianjin Electric Power, 2002, (3): 13-15. [12] 刘晓娟,方建安. 基于双修正因子的模糊时间序列日最大负荷预测[J]. 中国电力,2013,46(10):115-118. LIU Xiaojuan, FANG Jianan. Maximum load forecasting based on a bi-factor revised fuzzy time series model[J]. Electric Power,2013, 46(10): 115-118. [13] 王晶,冯显时,郭红珍. 基于蚁群元胞自动机理论的城市饱和负荷预测[J]. 中国电力,2011,44(7):17-20. WANG Jing, FENG Xianshi, GUO Hongzhen. Urban load saturation forecast based on ant cellular automata theory [J]. Electric Power,2011, 44(7): 17-20. [14] 罗军,何光宇,张思远,等. 基于负荷点相似的地区短期负荷预测新方法[J]. 电网技术,2007,31(6):67-71. LUO Jun, HE Guangyu, ZHANG Siyuan, et al. A new method to forecast regional short-term load based on similar load point [J]. Power System Technology, 2007, 31(6): 67-71. [15] 朱晓清,林健良,周鑫. 基于负荷曲线距离和形状的负荷分类方法[C]// 2011年青年通信国际会议论文集. 2011年青年通信国际会议. 中国澳门,中国广东珠海,2011. [16] 刘波. 粒子群优化算法及其工程应用[M]. 北京:电子工业出版社,2010. [17] 张贲,史沛然,蒋超. 气象因素对京津唐电网夏季负荷特性影响分析[J]. 电力自动化设备,2013,33(12):140-144. ZHANG Ben, SHI Peiran, JIANG Chao. Impact of meteorological factors on summer load characteristics of Beijing-Tianjin-Tangshan power grid[J]. Electric Power Automation Equipment, 2013, 33(12): 140-144.
|